Камни по знакам зодиака

Классификация отопительных приборов. Краткий обзор современных систем отопления жилых домов и общественных зданий Радиатор для квартиры

Описание:

Мастер-класс состоял из трех блоков. Первый блок был посвящен проблемам применения отопительных приборов в современном строительстве. Здесь рассматривались вопросы классификации отопительных приборов, их основные характеристики, методы определения этих характеристик в России и за рубежом, проблемы гармонизации методов испытаний отопительных приборов и требований к ним.

Отопительные приборы в современном строительстве

Мастер-класс АВОК «Отопительные приборы в современном строительстве» провел Виталий Иванович Сасин, кандидат технических наук, старший научный сотрудник, заведующий отделом отопительных приборов и систем отопления ОАО «НИИсантехники», директор научно-технической фирмы ООО «Витатерм», член Президиума НП «АВОК».

В мастер-классе приняли участие специалисты из Москвы, Великого Новгорода, Дмитрова, Жуковского, Рязани, Санкт-Петербурга, Уфы, Челябинска, Электростали.

Мастер-класс состоял из трех блоков. Первый блок был посвящен проблемам применения отопительных приборов в современном строительстве. Здесь рассматривались вопросы классификации отопительных приборов, их основные характеристики, методы определения этих характеристик в России и за рубежом, проблемы гармонизации методов испытаний отопительных приборов и требований к ним. Во втором блоке рассматривались новые отопительные приборы, представленные на российском рынке, их основные технические характеристики, рекомендации по применению, монтажу и эксплуатации. Третий блок был посвящен терморегулирующей и запорной арматуре, применяемой для регулирования теплового потока отопительных приборов.

Настоящая статья обобщает вопросы, рассмотренные в ходе первого и второго блоков мастер-класса АВОК.

Классификация отопительных приборов и основные технические требования к их конструкциям, методам контроля, монтажа и эксплуатации приведены в Стандарте АВОК «Радиаторы и конвекторы отопительные. Общие технические условия» (СТО НП «АВОК» 4.2.2–2006).

Хочется обратить внимание проектировщиков на особенности испытания отопительных приборов и существующие методики этих испытаний. В России методика испытаний отличается от методик, принятых в Европе и Китае. Например, в нашей стране в климатической камере при испытаниях отопительных приборов должны охлаждаться стенки, для того чтобы процесс был стационарным, но при этом запрещено охлаждать пол. В результате приборы, испытанные по разным методикам, выдают различные показатели. Европейские показатели обычно несколько завышены по сравнению с отечественными. Ранее, при перепаде температур 90/70 °С, это завышение составляло около 8–14 %, сейчас, при переходе в европейских странах на перепад 75/65 °С, разница уменьшилась, но все равно составляет 3–8 %.

В среднем тепловые показатели отопительных приборов, определенные согласно европейскому стандарту EN 442–2, превышали при одном и том же температурном напоре отечественные на 6–14 % при ранее использованных расчетных параметрах теплоносителя 90/70 °С и температуре воздуха 20 °С и на 3–8 % при новых параметрах (75/65 % и температуре воздуха 20 °С). Однако следует отметить, что большинство расчетных данных в зарубежных каталогах и проспектах пересчитано со «старого» стандартного температурного напора θ = 60 °С на «новый» θ = 50 °С, определенных все-таки при погрешности до 14 %.

Кроме того, есть различие и в методиках проведения гидравлических испытаний. Зарубежные методики предусматривают испытания нового прибора, отечественные – уже загрязненный прибор, соответствующий примерно трем годам эксплуатации. Гидравлические характеристики, полученные по зарубежным методикам на «чистых» приборах, оказываются ниже на 10–30 % определенных согласно отечественным требованиям на приборах с примерно трехлетним сроком эксплуатации.

Отличаются и требования отечественных и зарубежных норм по прочности. С другой стороны, и некоторые отечественные производители в целях экономии используют так называемый «расчетный» метод определения теплоотдачи отопительных приборов, которая при этом неоправданно завышается. В результате вместо расчетной температуры 18–22 °С в помещениях обеспечивается всего лишь 13–14 °С.

И наконец, отечественные рабочие прочностные характеристики отопительных приборов определяются с большим запасом по сравнению с испытательными с завышением в 1,5 раза, а не в 1,3 раза, как за рубежом. К отечественным приборам дополнительно предъявляются требования по соотношению значений минимальных разрушающих прибор давлений и их максимально допустимых рабочих давлений.

Сопоставление отечественных и европейских (ЕN 442–2) методов тепловых испытаний отопительных приборов показывает, что отечественная методика в большей мере, чем зарубежная, отвечает реальным условиям эксплуатации отопительных приборов и не дает завышения тепловых характеристик. Гидравлические и прочностные испытания отопительных приборов, проведенные согласно российским требованиям, также в большей мере, чем по зарубежным, отражают реалии эксплуатации отопительных приборов в отечественном строительстве.

Таким образом, можно сделать вывод, что отечественные методы испытаний более четко, чем зарубежные, определяют основные технические характеристики отопительных приборов применительно к отечественным условиям их эксплуатации. Проблема применения отопительных приборов определяется в значительной мере возможностью получения полных и достоверных данных по их теплогидравлическим, прочностным и эксплуатационным характеристикам. Зарубежные методы, с учетом принятых в Европе методов испытаний, завышают тепловые (обычно на 4–8 %) и прочностные показатели (на 12 %), а также занижают гидравлические характеристики на 5–20 %. Отечественные производители зачастую используют для получения основных технических данных расчеты и испытания на неаккредитованных и неаттестованных стендах, завышая, в частности, тепловые показатели на 20–50 %, а в ряде случаев и вдвое.

Использование в системах отопления медных труб возможно в случае, если содержание растворенного кислорода в воде составляет не более 36 мкг/дм 3 , т. е. в европейских условиях медные трубы могут применяться с определенными ограничениями. Практически они могут применяться везде, однако указанное нормативное ограничение имеет место. В нашей стране рассматриваемый параметр не лимитирует применение медных труб в системах отопления.

В отечественной практике принята следующая классификация систем отопления:

По способу присоединения центральных систем отопления к источнику тепловой энергии: по независимой схеме (автономная или независимая от теплоносителя система теплоснабжения), по зависимой схеме со смешением горячей воды системы теплоснабжения с обратной (охлажденной) водой системы отопления и по зависимой прямоточной схеме.

По способу побуждения движения теплоносителя: с естественной циркуляцией (гравитационные) и с искусственной циркуляцией (насосные или элеваторные).

По схеме присоединения отопительных приборов к теплопроводам: двухтрубные и однотрубные. В двухтрубных системах отопительные приборы присоединены параллельно к двум самостоятельным теплопроводам – горячему, подающему воду в прибор, и обратному, отводящему ее от приборов; в однотрубных приборы присоединены последовательно к одному общему теплопроводу.

По способу прокладки теплопроводов (труб): на вертикальные и горизонтальные, открытые или скрытые (в каналах, штробах).

По расположению подающей и обратной магистралей: с верхним размещением магистрали с горячей водой и с нижним обратной или с нижним размещением подающей магистрали и верхним обратной, а также с нижним или верхним размещением как подающей, так и обратной магистралей.

По направлению движения теплоносителя в разводящих магистральных теплопроводах и схеме последних: тупиковые (с противоположным направлением движения теплоносителя в подающей и обратной магистралях) и попутные (с движением теплоносителя в обеих магистралях в одном направлении).

По максимальной температуре горячей воды, поступающей в систему отопления: низкопотенциальные (до 65 °С), низкотемпературные (до 105 °С) и высокотемпературные (свыше 105 °С).

Одним из наиболее удачных вариантов схемы разводки отопления является двухтрубная система разводки основных стояков с подводкой через коллектор к поквартирной разводке. Поквартирная разводка выполняется либо по двухтрубной периметральной, либо по лучевой схеме. Трубы в полу прокладываются либо в гофрированной трубе, либо с теплоизоляцией толщиной не менее 9 мм. Последний вариант предпочтительней. В обоих вариантах подвижки трубы в результате теплового расширения не оказывают никакого влияния на нормальную работу системы.

За рубежом в последнее время все большее распространение получает однотрубная система поквартирной плинтусной разводки с Н-образным подключением отопительных приборов. Одним из достоинств этой схемы является именно легкость прокладки магистралей вдоль стен обслуживаемого помещения.

Вертикальные системы отопления бывают с нижними подающими магистралями и с верхними подающими магистралями. У обеих систем есть как достоинства, так и недостатки. Например, для того чтобы реализовать систему отопления с верхней подающей магистралью, необходимо, чтобы в здании был предусмотрен чердак или верхний технический этаж. При нижней разводке подающие магистрали расположены в подвале здания или на нижнем техническом этаже.

В этом случае вся запорная и регулирующая арматура легко доступна, можно легко производить балансировку, локализацию аварий и т. д.

К сожалению, в настоящее время в многоэтажных жилых домах, особенно муниципальных, широко распространена практика замены отопительных приборов, предусмотренных проектом, на приборы совершенно другого типа. При замене отопительного прибора необходимо слить стояк (известен случай, когда для замены отопительного прибора потребовалось в ЦТП слить воду из системы отопления трех жилых зданий, подключенных к данному ЦТП). Известно много случаев, когда жильцы делали отапливаемые лоджии с переносом отопительных приборов. Был также случай, когда открытый балкон был переделан в закрытый, а для его отопления использовалось пять радиаторов, подключенных к одному стояку, при этом практически прекратилась циркуляция теплоносителя по всему этажу. Очень часто при двухтрубных системах отопления с термостатами жильцы снимают эти термостаты (не термостатическую головку, что в крайнем случае допустимо, а именно сам термостат), в результате чего вода перестает поступать на верхние этажи. В этом отношении более устойчивы как раз однотрубные системы отопления за счет наличия замыкающего участка.

В одном из городов Подмосковья четыре достаточно крупных жилых 14-этажных здания были оснащены панельными радиаторами. Присоединение систем отопления осуществлялось по независимой схеме через ИТП. Дома с теплым чердаком, схема движения теплоносителя «снизу-вверх». В верхней части системы в теплом чердаке установлен ручной воздушный клапан. На все четыре здания предусмотрен расширительный бак достаточно большого объема. Три здания были подключены нормальным образом, но в четвертом здании из-за ошибки службы эксплуатации система не была подключена к общему замыкающему участку (к расширительному баку). В результате панельные радиаторы в квартирах верхних этажей превратились в воздухосборники, и отопительные приборы просто раздулись под действием избыточного давления.

Если есть возможность оснастить двухтрубную систему нужным образом, а затем квалифицированно ее эксплуатировать, можно применять такую схему. Если таких возможностей нет, то все-таки надежнее использовать однотрубную систему. Кроме надежности, такая система еще будет и дешевле.

Если не производить тщательную теплоизоляцию стояков, то и при двухтрубной системе отопления температура теплоносителя в каждом отопительном приборе будет различаться. Так, в двухтрубной системе отопления на последних двух этажах 16-этажного жилого здания температура теплоносителя составляет не 95/70 °С, а 80/65 °С, что вызывает жалобы жильцов.

Сейчас иногда заимствуется техническое решение, принятое в европейских странах, когда циркуляционный насос системы отопления устанавливается на прямой магистрали (горячей). Здесь нужно иметь в виду, что ранее в этих странах, при параметрах теплоносителя 90/70 °С, насосы устанавливались, как правило, на обратной магистрали. Потом, при переходе к параметрам 75/

65 °С, стало возможным устанавливать те же самые насосы и на прямой магистрали, поскольку они вполне выдерживают указанную температуру, а в системе за счет такой установки обеспечивается дополнительный напор, при котором система отопления работает более устойчиво. Но в высотных зданиях в верхней геометрической точке давление должно быть не менее 10 м вод. ст. В этом случае установка насоса на обратной магистрали практически не влияет на работу системы отопления, поскольку сам по себе напор там достаточно велик.

Переход в европейских странах на параметры теплоносителя с 90/70 °С на 75/65 °С привел к тому, что расход теплоносителя сразу увеличился в два раза, увеличилась площадь поверхности отопительных приборов, диаметр труб, что привело к увеличению стоимости отопительного оборудования. Однако в таком снижении параметров есть свои определенные преимущества. Во-первых, сокращаются бесполезные невозвратимые теплопотери (все стояки хорошо теплоизолированы). Во-вторых, в системах с автономными источниками теплоснабжения, например, электрическими котлами, эти котлы лучше работают при более низких температурах греемой воды (или антифриза).

Системы отопления с опрокинутой циркуляцией появились в 1960-х годах, когда стали широко применяться однотрубные системы отопления. При этой схеме организации отопления теплоноситель циркулирует «снизу-вверх». Эта схема была предложена для компенсации теплопотерь за счет инфильтрации.

В настоящее время при расчете системы отопления зачастую учитывается только вентиляционная нагрузка. Эта величина постоянна для всех этажей многоэтажного жилого здания. Инфильтрация же зависит от высоты. На нижних этажах нагрузка на систему отопления от теплопотерь за счет инфильтрации выше, чем на верхних. Но при опрокинутой циркуляции в отопительные приборы нижних этажей подается теплоноситель с более высокой температурой, что позволяет компенсировать несколько более высокую отопительную нагрузку. Еще одно достоинство подобной схемы – улучшенное воздухоудаление. Есть у такой схемы и недостатки. Один из недостатков – некоторое уменьшение коэффициента затекания, в результате чего хуже работают отопительные приборы, причем коэффициент затекания меняется в зависимости от типа отопительного прибора.

Характеристики отопительных приборов по нашим нормам определяются при барометрическом давлении 760 мм рт. ст. Это связано с тем, что наши отечественные отопительные приборы, даже радиаторы, достаточно большую долю теплоты передавали помещению посредством конвективного теплообмена. Конвективная составляющая зависит от того, какой объем воздуха омывает отопительный прибор. Этот объем зависит от плотности воздуха, которая в свою очередь зависит не только от температуры, но и от барометрического давления. Поэтому, например, при проектировании системы отопления объекта, расположенного в Красной Поляне, где барометрическое давления ниже 760 мм рт. ст., следует учитывать, что теплоотдача конвекторов уменьшится на 9–12 %, а радиаторов – на 8–9 %.

Традиционные отопительные приборы – чугунные радиаторы (в основном секционные) – отличаются высокой надежностью при эксплуатации в отечественных условиях, могут использоваться в зависимых системах отопления зданий различного назначения, за исключением систем отопления с антифризом. Дело в том, что из-за не очень высокого качества обработки мест соединения секций радиаторов в этих узлах вместо паронитовых прокладок применяются резиновые уплотнения. Эти резиновые уплотнения меняют свои структурные свойства при взаимодействии с антифризом.

В настоящее время на рынке представлены модели чугунных радиаторов, рассчитанные на рабочее давление не 9, а 12 атм. Следует также отметить, что, согласно Стандарту АВОК «Радиаторы и конвекторы отопительные. Общие технические условия» (СТО НП «АВОК» 4.2.2–2006), предъявляются более жесткие требования к прочностным показателям отопительных приборов: испытательное давление литых отопительных приборов (в том числе и чугунных, и алюминиевых радиаторов) должно превышать рабочее на 6 атм. или в 1,5 раза, а давление разрыва – превышать рабочее не менее чем в 3 раза. Из этого следует, что радиаторы, которые испытываются на 9 атм., могут работать при давлении 3 атм., а не 6, что зачастую декларируется производителем. Также и радиаторы, испытываемые на давление 15 атм., рассчитаны на рабочее давление 9, а не 10 атм. Этот момент необходимо всегда иметь в виду, поскольку известны случаи, когда импортные чугунные литые радиаторы разрушались из-за высокого давления.

В значительной мере высокая доля чугунных радиаторов (доля потребления в России 46–48 %) определяется реалиями нашей эксплуатации, поскольку теплоноситель (вода) зачастую не отвечает предъявляемым к ней требованиям. Единственный документ, в котором сформулированы требования к воде, это «Правила технической эксплуатации электрических станций и сетей Российской Федерации» (ранее этот документ имел номер РД 34.20.501– 95). Пункт 4.8 этого документа носит название «Водоподготовка и водно-химический режим тепловых электростанций и тепловых сетей», и в этом пункте предъявляются требования к воде, используемой в системах теплоснабжения и, соответственно, в системах отопления, тем более, если система отопления подключена по зависимой схеме. Необходимо отметить несколько важных моментов из этих правил технической эксплуатации, актуальных с точки зрения применения отопительных приборов. Так, согласно этому документу, содержание кислорода в воде не должно превышать 20 мкг/дм 3 .

В Европе указанное требование менее жесткое – количество растворенного кислорода в воде не должно превышать 100 мкг/дм 3 , и эта норма практически всегда соблюдается. Высказывались предложения гармонизировать в этой части отечественные нормы с европейскими. Однако опыт эксплуатации отечественных систем отопления показал, что эти нормы зачастую не соблюдаются, завышаясь иногда в 10–100 раз. Если же принять менее жесткую европейскую норму и завысить ее во столько же раз, последствия могут быть очень серьезными.

Необходимо также иметь в виду, что чугунные секционные радиаторы перед установкой следует перемонтировать, испытать, а после установки – окрасить. Все эти операции обуславливают дополнительные затраты, которые можно оценить из расчета около 20 долл. США за 1 кВт. Эту дополнительную стоимость следует обязательно включать в смету. Известны случаи, когда в смету закладывались лишь стоимость непосредственно самих радиаторов, а затем, для компенсации неучтенных дополнительных расходов, предусмотренные в проекте термостатические и балансировочные клапаны заменялись более дешевыми шаровыми кранами. Ряд производителей предлагает свои радиаторы уже полностью окрашенными и подготовленными к установке, соответственно, стоимость таких радиаторов несколько выше. В отношении стоимости чугунных радиаторов можно отметить, что указанная стоимость подвержена достаточно заметным резким колебаниям. В частности, некоторое время назад наблюдалось резкое возрастание стоимости таких приборов, хотя к настоящему времени ситуация стабилизировалась.

Стоимость отечественных моделей чугунных радиаторов в настоящее время составляет 1 400–1 500 руб./кВт. Дополнительная стоимость перегруппировки, испытаний на герметичность, монтажа и окраски составляет 400–500 руб./кВт.

У чугунных радиаторов довольно большая доля теплоты, около 35 %, передается помещению посредством лучистого теплообмена. Однако известны случаи, когда неквалифицированная служба эксплуатации в ходе ремонта помещений производила окраску таких радиаторов краской на основе порошковой алюминиевой пудры («серебрянкой»), тем самым сразу же снижая теплоотдачу отопительных приборов примерно на 10–15 %.

Стальные трубчатые радиаторы и дизайн-радиаторы (секционные, колончатые, блочные и блочно-секционные) отличаются широкой номенклатурой и хорошим внешним видом. Эти приборы поставляются в полной строительной готовности. Толщина стали для головки радиатора обычно составляет 1,5 мм, а стенок вертикальных труб – 1,25 мм, хотя иногда поставляются и приборы со стенками труб толщиной 1,5 мм. У ряда производителей имеются модели приборов со специальным покрытием внутренних стенок, ориентированным на использование в качестве теплоносителя воды низкого качества.

Кроме современного дизайна, в качестве достоинств этих приборов можно отметить гигиеничность и травмобезопасность. Представлены модели со встроенным термостатом. Однако приборы этого типа требуют жесткого соблюдения правил эксплуатации. Панельные и трубчатые радиаторы чаще выходят из строя не из-за растворенного в воде кислорода, а по причине подшламовой коррозии из-за отложения грязи.

Стоимость стальных трубчатых радиаторов составляет 2 500–3 000 руб./кВт. Доля потребления в России – 1,5–2 %.

Радиаторы из алюминиевых сплавов (алюминиевые радиаторы), как правило, отличаются очень хорошими дизайнерскими решениями. Среди их достоинств, кроме современного дизайна, широкая номенклатура, поставка полной строительной готовности.

Для изготовления алюминиевых радиаторов обычно используется силумин (сплав на основе алюминия и 4–22 % кремния). Этот материал не очень хорошо взаимодействует с теплоносителем, в котором много растворенного кислорода или высокий показатель pH (можно напомнить, что нейтральной среде соответствует значение pH, равное 7, кислой – ниже 7, щелочной – выше 7). Алюминий и его сплавы не очень боятся кислой среды. Производители таких приборов обычно заявляют в числе требований к теплоносителю показатель pH, равный 7–8. Однако, согласно требованиям упомянутых выше «Правил технической эксплуатации электрических станций и сетей Российской Федерации», значение рН для открытых систем теплоснабжения составляет 8,3–9,0, закрытых – 8,3–9,5, при этом верхний предел допускается только при глубоком умягчении воды, а для закрытых систем теплоснабжения верхний предел значения рН допускается не более 10,5 при одновременном уменьшении значения карбонатного индекса, нижний предел может корректироваться в зависимости от коррозийных явлений в оборудовании и трубопроводах систем теплоснабжения. В реальных условиях эксплуатации показатель pH теплоносителя составляет, как правило, от 8 до 9. Из этого следует, что формально в наших условиях алюминиевые радиаторы применять нельзя, за исключением коттеджей. В коттеджах теплоноситель циркулирует по замкнутому контуру, в результате чего в системе через некоторое время устанавливается химическое равновесие, кроме того, в системах отопления таких объектов давление относительно невысоко.

В последнее время некоторые дилеры указывают в числе требований к теплоносителю расширенный показатель pH от 5 до 11. Однако опыт испытаний и реальной эксплуатации показывает, что при показателе pH, равном 10, в алюминиевых отопительных приборах происходит интенсивное разрушение резьбы. Так, при гидравлических испытаниях из-за разрушения резьбы из таких радиаторов вылетали пробки. Для предотвращения подобных ситуаций в последние годы производители стали наносить на внутреннюю поверхность таких отопительных приборов специальное защитное покрытие. Кроме того, для изготовления отопительных приборов стали использоваться алюминиевые сплавы специального состава, нечувствительные к высокому показателю pH. Это так называемый «морской» алюминий – алюминиевый сплав, отличающийся высокой коррозионной стойкостью и прочностью.

Иногда ситуация усугубляется еще и тем, что в системах отопления применяются оцинкованные трубы, в результате чего скорость протекания электрохимической реакции резко увеличивается. Чтобы предотвратить это можно использовать для переходов запорно-регулирующую арматуру в латунном или бронзовом корпусе.

Проблемы возникают также и в тех случаях, когда в системе отопления с алюминиевыми отопительными приборами на каком-либо участке используются теплопроводы, выполненные из меди. Например, медные трубки могут применяться в теплообменниках, установленных в ИТП. В этом случае разрушаются не алюминиевые радиаторы, а именно медные изделия.

В системах с алюминиевыми радиаторами, как показал опыт эксплуатации, не всегда устойчиво работают автоматические воздухоотводчики. Лучше использовать воздухоотводчики ручные, причем во избежание возгорания взрывоопасной смеси, при выполнении этой операции категорически запрещено пользоваться открытым огнем.

Как уже было отмечено выше, алюминиевые радиаторы можно применять в коттеджах. Еще одна возможная область применения таких отопительных приборов – офисные здания крупных компаний, в которых есть собственная высококвалифицированная служба эксплуатации, которая не допускает замены отдельных отопительных приборов на приборы с иными характеристиками, строго выдерживает заданные режимы эксплуатации и т. д.

В многоэтажных жилых зданиях алюминиевые радиаторы применять, как правило, не рекомендуется. Вообще, все модели алюминиевых радиаторов требуют жесткого соблюдения правил монтажа и эксплуатации.

Стоимость радиаторов из алюминиевых сплавов 2 000–2 600 руб./кВт. Доля потребления в России равна 16 %, в том числе 6 % составляет доля биметаллических и биметаллических с алюминиевыми коллекторами.

Для предотвращения возможных проблем, характерных для алюминиевых радиаторов, – газовыделений, электрохимической коррозии и т. д. – были разработаны биметаллические радиаторы. Эти отопительные приборы дороже алюминиевых примерно на 20–25 %. Биметаллические радиаторы бывают двух типов. У радиаторов первого типа (секционных, колончатых и блочных) полностью стальной коллектор. Этот стальной коллектор затем под большим давлением заливается алюминиевым сплавом. В результате у таких радиаторов образуется хорошо развитое внешнее оребрение, как у обычных алюминиевых. Секции собираются на стальных ниппелях. В результате со стороны теплоносителя нет контакта стали и алюминия. Эти приборы по эксплуатационным показателям равноценны чугунным радиаторам. Однако такие приборы достаточно сложны в изготовлении. Например, у стальных заготовок линейное тепловое расширение в два раза меньше, чем у алюминиевого оребрения. В результате этого даже небольшая ошибка при заливке алюминиевого сплава может привести к тому, что монтажная высота секции будет отличаться от номинальной, что делает сборку отопительного прибора невозможной в принципе. Есть и другие технологические сложности. Из-за этих сложностей некоторые производители используют только отдельные стальные детали, а сами коллекторы изготавливают из алюминия. В приборах такого типа газообразование в результате электрохимической коррозии полностью не предотвращается, хотя и значительно уменьшается.

Стоимость биметаллических радиаторов первого типа составляет 2 500–3 000 руб./кВт, второго типа – 2 400–2 800 руб./кВт. Доля на российском рынке указана выше.

За рубежом самым распространенным типом отопительных приборов являются стальные панельные радиаторы . Их достоинства – современный дизайн, широкая номенклатура, полная строительная готовность, высокая гигиеничность (модели без оребрения). Поставляются модели со встроенным термостатом.

Несколько вариантов приборов этого типа отечественного производства изготовлены из стали толщиной 1,4 мм и рассчитаны на максимальное рабочее избыточное давление теплоносителя 10 атм. Минимальное испытательное давление в этом случае составляет 15 атм. Здесь учитывается то обстоятельство, что для панельных радиаторов минимально допустимое нормируемое давление разрушения увеличивается не в 3 раза, по сравнению с максимальным рабочим давлением теплоносителя, как для литых отопительных приборов, а в 2,5 раза, поскольку отопительные приборы этого типа при повышении давления ведут себя несколько иначе. Уже при 9–10 атм. у них начинается потрескивание красочного слоя. Затем, после превышения величины давления свыше 15,5–16 атм. панельный радиатор начинает раздуваться. Разрушение прибора происходит обычно при давлении 25–30 атм. Таким образом, эти приборы выдерживают все заявленные параметры. Более того, благодаря пружинным свойствам конструкционного материала, эти отопительные приборы позволяют в некоторой степени гасить гидравлические удары.

Все модели стальных панельных радиаторов требуют жесткого соблюдения правил эксплуатации. Их стоимость составляет 800–1 300 руб./кВт, доля потребления в России – 15 %.

Конвекторы (настенные, напольные, с кожухом, без кожуха, стальные, с использованием цветных металлов) отличаются высокой надежностью в эксплуатации в отечественных условиях, могут использоваться в зависимых системах отопления зданий различного назначения. Кроме того, среди их достоинств – малая инерционность, широкая номенклатура, современный дизайн, низкая температура наружных элементов конструкции конвектора, исключается опасность ожогов. Приборы поставляются в полной строительной готовности, имеются модели со встроенным термостатом.

Среди конвекторов можно выделить два типа конструкций. У конвекторов первого типа кожух способствует образованию «эффекта тяги». При снятии кожуха теплоотдача отопительного прибора уменьшается на 50 %. У конвекторов второго типа кожух выполняет чисто декоративную функцию, его снятие не только не уменьшает теплоотдачу, но даже может повысить эффективность прибора. Кроме того, снятие кожуха способствует уменьшению загрязнения отопительного прибора, улучшает условия его очистки. Однако для того чтобы определить, какого типа конвектор установлен, можно ли снимать кожух, владельцам квартир следует проконсультироваться со специалистами.

Стоимость стальных конвекторов составляет 500–750 руб./кВт, конвекторов с медно-алюминиевым нагревательным элементом – 1 500–2 300 руб./кВт. Доля потребления в России – 16%.

Отдельно можно выделить специальные отопительные приборы – конвекторы, встраиваемые в конструкцию пола, вентиляторные конвекторы. Эти приборы предназначены в основном для зданий «элитного» класса и коттеджей. Их стоимость составляет 3 000–10 000 руб./кВт, доля потребления в России – 0,5–1 %.

Из опыта эксплуатации отопительных приборов известны случаи, когда из-за локального попадания струи холодного воздуха из окна, открытого в режиме зимнего проветривания, локально замерзали и лопались отопительные приборы. Обычно такому замерзанию подвержены чугунные и, в меньшей степени, алюминиевые радиаторы. Конвекторы в этом случае практически никогда не замерзают. Поэтому проветривание створкой окна с позиции защиты отопительных приборов от разрыва при замерзании достаточно опасно. Предпочтительнее использовать для проветривания традиционные для нашей страны форточки.

Для экономии тепловой энергии отопительные приборы могут оснащаться термостатами. Здесь необходимо обратить внимание на то, что термостат – это не запорная, а лишь регулирующая арматура, поэтому установка термостата ни в коем случае не ликвидирует необходимость установки шаровых кранов для отключения отдельных отопительных приборов.

Однако для экономии тепловой энергии в системах отопления одной лишь установки термостатов недостаточно. Термостат позволяет регулировать тепловую нагрузку в соответствии с фактическим тепловым балансом помещения, особенно большой эффект экономии тепловой энергии достигается в переходный период, когда в теплое время достаточно часты перетопы. Однако в случае отсутствия учета тепловой энергии установка термостатов обеспечивает в большей степени комфортные условия в обслуживаемом помещении, нежели экономию энергии, которая составляет всего около 5–8 %. При подключении каждой отдельной квартиры через коллекторы возможна установка поквартирного теплосчетчика. Эти теплосчетчики не предназначены для коммерческого учета тепловой энергии, но позволяют проводить взаиморасчеты с владельцами каждой квартиры с учетом показаний теплосчетчика на вводе в здание: по сопоставлению показателей общего и квартирных теплосчетчиков устанавливается, какую долю потребленной тепловой энергии оплачивает каждый жилец. Вообще в Москве принято решение об установке ИТП в каждом здании, и в каждом ИТП, в свою очередь, устанавливается теплосчетчик.

С установкой теплосчетчиков сопряжено множество проблем различного характера. Например, следует иметь в виду, что за рубежом процедура оплаты потребленной тепловой энергии по показаниям теплосчетчика часто устанавливается на государственном уровне. В нашей стране эта процедура не узаконена. Сами теплосчетчики стоят достаточно дорого, кроме того, необходима их периодическая проверка, которая также требует финансовых затрат. В результате для отдельно взятого жильца установка счетчика может быть с экономической точки зрения в ряде случаев нецелесообразна, хотя установка счетчика уже заставляет людей экономить тепловую энергию.

Еще одна проблема, которую требуется решить при установке теплосчетчика – выделение квартир, в которые установка счетчиков вообще нецелесообразна. В одном из регионов России была проведена реконструкция целого городского жилого квартала, в ходе которой во всех квартирах были установлены тахометрические теплосчетчики («вертушки»). Однако были применены теплосчетчики с чувствительностью 36 кг/ч. Эта чувствительность сопоставима с расчетным расходом теплоносителя для однокомнатной квартиры, и счетчики в однокомнатных квартирах просто не работали. В результате для однокомнатных квартир ввели оплату за тепловую энергию не по показаниям счетчика, а пропорционально площади квартиры, однако при этом в стоимость заложили и всю ту экономию, которая достигалась в 2–3-комнатных квартирах.

По ряду зарубежных данных, опыт эксплуатации многоквартирных зданий в Европе показал, что при расчете системы отопления на перепад 90–70 °С установка теплосчетчиков оправдана только в квартирах, площадь которых превышает величину 100 м 2 (разумеется, в данном случае более правильно говорить о нагрузке квартиры, но, поскольку здесь речь идет об однотипных квартирах с хорошей теплозащитой, герметичными окнами и т. д., то можно условно говорить про площадь). В некоторых странах на уровне нормативных документов разрешено не устанавливать счетчики в квартирах площадью менее 100 м 2 , в связи с чем относительно дешевые муниципальные квартиры ограничиваются этой площадью.

Если нет возможности установить теплосчетчик, учет потребленной тепловой энергии может производиться посредством «распределителей тепловой энергии», точнее, распределителей стоимости потребленной теплоты. Эти приборы не являются счетчиками, показывающими общее количество потребленной тепловой энергии, а позволяют определить стоимость теплоты, потребленной каждой отдельной квартирой. Однако здесь должна быть четко и однозначно определена процедура оплаты. Должно быть законодательно закреплено, в каких пропорциях оплачивается отопление отдельной квартиры и мест общего пользования. Например, в европейских странах, в отличие от России, узаконено, какую долю должен доплачивать владелец квартиры за отопление общественных зон – лестничных клеток, вестибюлей, помещений для колясок и велосипедов и т. д.

При установке распределителей определенные трудности возникают с определением возможных мест их установки (например, на каком уровне они должны быть установлены – одна треть от высоты прибора, посередине и т. д.). Приборы европейского производства рассчитаны в основном для установки на панельные или трубчатые радиаторы. Установка этих приборов на конвекторы требует пересчета показаний. Кроме того, эти приборы не рассчитаны на применение в системах отопления, в которых движение теплоносителя осуществляется по схеме «снизу-вверх», поскольку распределение теплоносителя в отопительном приборе при такой схеме будет отличаться от распределения теплоносителя в приборе, подключенном по схеме «сверху-вниз». Очевидно, что для расчета потребленной тепловой энергии в последнем случае требуются специальные расчетные коэффициенты, причем свой коэффициент на каждую длину отопительного прибора.

Распределители бывают двух типов – с электронным датчиком температуры и испарительного типа, более дешевые. При использовании счетчиков испарительного типа необходимо, чтобы к ним был обеспечен доступ контролирующей организации. Поскольку счетчики установлены внутри квартиры, доступ к ним зачастую невозможен. Электронные счетчики позволяют организовать передачу данных по радиоканалу, поэтому для снятия показаний доступ в каждую квартиру не требуется.

Еще одна проблема, связанная с установкой теплосчетчиков и расчетами за фактическое теплопотребление, как показал в том числе и зарубежный опыт, ряд владельцев квартир отключают отопление, особенно в случае своего отсутствия в квартире, и обогрев квартиры осуществляется только за счет теплопоступлений из соседних квартир. Разумеется, в этом случае возрастают затраты на отопление владельцев этих квартир. Один из возможных выходов здесь – порядок оплаты, когда определенная доля оплачивается пропорционально площади квартиры, часть – на отопление общественных зон и часть – по показаниям квартирных теплосчетчиков или распределителей.

Целесообразно ли устанавливать автоматический терморегулятор на отопительных приборах при зависимом присоединении системы отопления к тепловым сетям?

С точки зрения создания комфортных условий в помещениях и экономии энергии установка автоматических терморегуляторов целесообразна в любом случае. Однако необходимо определить, позволяет ли качество воды, циркулирующей в тепловых сетях, использовать данную регулирующую арматуру. Если в сетевой воде содержится большое количество загрязнений, предпочтительнее использовать ручные терморегуляторы.

Обогрев помещения невозможно представить без отопительных приборов, представленных на рынке в достаточно широком видовом разнообразии. Для того, чтобы выбрать для себя наиболее подходящий вариант, приходится взять в учет целый ряд факторов.

Какие бывают

Классификация отопительных приборов осуществляется по следующим критериям:

  • Тип теплоносителя. Может быть жидким или газообразным.
  • Материал изготовления.
  • Технические характеристики. Имеются в виду размеры, мощность, особенности установки и наличие регулируемого нагрева.

При выборе оптимального варианта необходимо отталкиваться от особенностей отопительной системы дома и эксплуатационных условий. При этом должен соблюдаться весь перечень требований и норм, касающихся приборов обогрева. Наряду с мощностью изделий большое значение имеет специфика их монтажа. При отсутствии подачи газа и возможности обустройства водяного отопления остается еще вариант с электрическими обогревателями.

Устройство водяной системы отопления

Водяное отопление является наиболее распространенным способом обогрева зданий. Это объясняет наличие в продаже значительного разнообразия разновидностей приборов отопления для водяных контуров. Причины кроются в хорошем уровне КПД этих изделий, а также разумными расходами на покупку, установку и эксплуатацию обслуживания. Конструкции этих обогревающих приборов очень схожи между собой. Сердцевиной каждого из них является полость: по ней циркулирует горячая вода, нагревающая поверхность батареи. Далее в действие вступает процесс конвекции, транслирующий тепло на всю комнату.


Радиаторы для водяных систем отопления могут изготовляться из следующих материалов:

  1. Чугуна.
  2. Стали.
  3. Алюминия.
  4. Комбинации материалов (т.н. «биметаллические батареи»).

Любой из этих видов отопительных приборов обладает своей спецификой. В каждом конкретном случае нужно учитывать площадь обогреваемого помещения, особенности установки, качество и тип используемого теплоносителя (к примеру, в некоторых случаях используют антифриз). Для регуляции мощности батарей предусмотрена возможность наращивания или отсоединения секций. Желательно, чтобы длина одного радиатора не превышала 1,5-2 метра.

Батареи из чугуна

Чугунный тип отопительных приборов относится к наиболее распространенным вариантам комплектации отечественных централизованных систем. Его предпочитали другим разновидностям в основном из-за дешевизны. В дальнейшем приборы данного типа стали постепенно вытесняться устройствами с более высоким коэффициентом теплоотдачи (у чугунных батарей он всего 40%). В настоящее время радиаторами из чугуна в основном оснащаются системы старого образца. Что касается современных интерьеров, то в них можно встретить дизайнерские чугунные модели.


К сильным сторонам устройства отопительных приборов можно отнести значительную площадь поверхности, через которую происходит передача энергии от теплоносителя в окружающее пространство. Еще одно заметное преимущество – долговечность чугунных батарей: они способны прослужить без проблем 50 и более лет. Недостатки также имеются, и их немало. Во-первых, теплоноситель используется в очень больших объемах (до 1,5 л на каждую секцию). Разогревается чугун не спеша, поэтому приходится ожидать, пока после включения котла тепло начнет поступать в комнаты. Ремонтировать такие батареи непросто, и чтобы максимально снизить вероятность поломок, их приходится чистить каждые 2-3 года. Монтажные работы утруднены большим весом радиаторов.

Батареи из алюминия

Алюминиевые устройства отличаются очень высокой теплоотдачей, что позволяет доводить мощность одной секции до 200 Вт. Этого вполне достаточно для полноценного обогрева 1,5–2 м 2 жилой площади. К достоинствам батарей из алюминия можно отнести также их дешевизну и небольшую массу, что заметно упрощает монтажные работы. По длительности эксплуатации алюминиевые приборы почти в два раза уступают своим чугунным аналогам (могут прослужить не более 25 лет).

Биметаллические батареи

Сильной стороной биметаллических конструкций являются специальные конвекционные панели, способствующие увеличению качества циркуляции воздушных потоков. Кроме того, приборы данного типа могут оснащаться специальными регуляторами, с помощью которых можно увеличивать или уменьшать расход теплоносителя. Установочные работы по своей простоте напоминают монтаж алюминиевых радиаторов. Каждая из секций обладает мощностью на уровне 180 Вт, обеспечивая отопление 1,5 м 2 площади.


В некоторых случаях использование приборов водяного типа отопления встречается с серьезными трудностями. К примеру, биметаллические радиаторы нельзя устанавливать в системах, где в качестве теплоносителя применяют антифриз. Эти незамерзающие жидкости, оберегающие трубы от размерзания, способны оказывать разрушающее воздействие на внутренность батарей. Также следует брать во внимание дороговизну этого варианта отопления.

Электрические виды обогревателей

В тех случаях, когда с организацией водяного отопления возникают проблемы, принято использовать электрические обогреватели. Они также представлены несколькими разновидностями, отличаясь друг от друга мощностью и способом отдачи тепла. Наиболее весомым недостатком бытовых отопительных приборов такого рода являются большие затраты потребляемого электричества. При этом нередко требуется прокладка новой проводки, рассчитанной на возросшие нагрузки. Если общая мощность всех электронагревателей превосходит 12 кВт, технические нормы предусматривают организацию сети с напряжением 380 В.


Конвекционный тип отопительных приборов

Для электрических обогревателей конвекционного типа характерна способность обогревать помещения с большой скоростью, чему содействуют циркулирующие потоки теплого воздуха. Нижняя часть приборов оснащается специальными отверстиями для засасывания воздушных потоков, для нагревания которых используются ТЭНы (теплый воздух выходит через верхнюю насечку). Мощность современных отопительных приборов данного типа колеблется в пределах 0,25-2,5 кВт.

Масляные радиаторы

В работе масляных электронагревателей также применяется принцип конвекции. Внутрь аппарата заливают специальное масло для нагрева ТЭНом. Для регулировки нагревания зачастую применяется термостат, выключающий питание по достижению нужной температурной отметки. Приборы на масле отличаются высокой инерционностью. Это проявляется в медленном разогреве прибора и в таком же медленном остывании после прекращения подачи электричества.


Температура поверхности обычно нагревается до 110–150 градусов, что предусматривает соблюдение правил безопасности. Такой прибор запрещается устанавливать впритык к возгораемым поверхностям. Масляные радиаторы оснащены удобной регулировкой интенсивности нагрева, рассчитанной на 2–4 режима работы. Держа в памяти мощность одной секции (150–250 кВт), выбрать оптимальную модель для обогрева конкретной комнаты совсем не сложно. Максимальная мощность такого прибора ограничена 4,5 кВт.

Инфракрасный обогрев

Выбор отопительных приборов инфракрасного типа приносит следующие дивиденды:

  • Экономия электроэнергии до 30%, если сравнивать с обычными электрическими приборами.
  • Кислород в воздухе не сгорает.
  • Помещение нагревается за считанные минуты.

Классифицируют инфракрасные приборы по способу трансляции волн. В новых отопительных приборах передача излучения в окружающее пространство осуществляется благодаря резисторным проводникам, установленным на специальной пленке. Мощность теплых матов может достигать 800 Вт/м 2 . Пленочные обогреватели удобны тем, что с их помощью можно организовывать теплые полы.

Что касается карбоновых излучателей, то в них волны испускаются спиралями из герметичной прозрачной колбы. Мощность таких приборов находится в пределах 0,7-4,0 кВт. Мощность карбоновых обогревателей на порядок выше, что предусматривает более жесткие меры пожарной безопасности.

Обогрев газом

В целях экономии финансов можно использовать газовые обогреватели. Простейшая их разновидность - газовый конвектор, который коммутируется к магистральному газопроводу или баллону со сжиженным пропаном. Горелка прибора полностью защищена от контакта с окружающей атмосферой: для подачи кислорода в этом случае используют специальную трубку, которую выводят на улицу через отверстие в стене. Для данных приборов характерна большая мощность (не менее 8 кВт) и дешевизна эксплуатации. Среди слабых сторон газовых обогревателей можно выделить обязательность постановки на учет в контролирующих ведомствах, необходимость эффективного вентилирования и потребность в регулярной чистки форсунок.

В состав системы отопления входит несколько ключевых компонентов: котлы, радиаторы, трубы, устройства контроля и безопасности. В совокупности они должны составить эффективную систему передачи тепла от нагретого теплоносителя воздуху в помещении. Эту функцию выполняют отопительные приборы систем отопления: газовые, электрические. В чем их особенность и как правильно выбрать оптимальную модель для конкретного теплоснабжения?

Назначение приборов отопления

В подавляющем большинстве случаев нагрев воздуха в помещениях дома происходит за счет передачи тепла от поверхности нагревательных элементов – радиаторов, батарей. Они могут отличаться конструктивно, иметь различный дизайн и способ поднятия температуры на поверхности. Так, стальные приборы отопления Kermi предназначены для комплектации водяной системы.

Однако несмотря на все многообразие типов можно выделить несколько ключевых особенностей этих элементов теплоснабжения. Все виды нагревательных приборов системы отопления можно классифицировать по следующим признакам:

  • Используемый теплоноситель – горячая вода, электрический или газовый нагревательный элемент;
  • Материал изготовления : сталь, чугун, алюминий или биметаллическая конструкция;
  • Эксплуатационные качества : номинальная мощность, размеры, способ монтажа и возможность регулировки интенсивности нагрева.

Выбор определенного типа напрямую зависит от конкретной схемы теплоснабжения. Биметаллические приборы отопления устанавливаются для водяной системы. В редких случаях – при использовании в качестве теплоносителя горячего пара. Неправильный выбор может заметно снизить эффективность работы отопления. Поэтому нужно рассмотреть особенности конструкции и технические качества, которыми обладают приборы для отопления помещений.

Независимо от вида радиатора или любого другого нагревательного отопительного прибора он должен гармонично сочетаться с общим интерьером помещения. Важно обращать внимание на дизайн конструкции.

Виды устройств для водяного отопления

Наибольший ассортимент имеют отопительные приборы систем водяного отопления. Это объясняется высокой эффективностью работы подобных схем теплоснабжения, а также оптимальными затратами на обслуживание.

Все приборы отопления для дома этого типа имеют схожую конструкцию. Внутри располагаются каналы, по которым протекает теплоноситель. Тепло от него передается на поверхность радиатора (батареи) и затем с помощью естественной конвекции воздуху в помещении.

Главным отличием, которым характеризуются конвекторные приборы отопления, является материал изготовления. Именно он во многом определяет конструкцию нагревательного элемента. В настоящее время есть 4 вида радиаторов:

  • Чугунные;
  • Алюминиевые и биметаллические;
  • Стальные.

Каждый из них имеет ряд функциональных и эксплуатационных особенностей. Они выбираются в зависимости от расчетных показателей – каждый тип отопительного прибора систем водяного отопления должен соответствовать характеристикам теплоснабжения.

Немаловажным фактором является вид используемого теплоносителя. Для многих биметаллических приборов отопления запрещено применение антифризов.

Чугунные батареи

Это одни из первых нагревательных компонентов, которые использовались в системах отопления. Выбор материала изготовления обусловлен относительной дешевизной, а главное – большой теплоемкостью чугуна.

Данный вид нагревательного прибора для системы отопления в настоящее время не особо популярен. Причиной этому является самый низкий коэффициент теплопроводности. Однако для создания классического интерьера в комнате нередко используются дизайнерские чугунные радиаторы.

Также следует учитывать, что рассматривать их в качестве конвекторных приборов отопления будет нецелесообразно. В конструкции не предусмотрены дополнительные пластины, способствующие лучшей циркуляции воздушных масс. Помимо это важно знать такие особенности эксплуатации чугунных радиаторов:

  • Большой объем теплоносителя. В среднем этот показатель составляет 1,4 л. Это способствует быстрому остыванию горячей воды, но эффективно для небольшой отопительной системы;
  • Чугунные приборы для отопления комнат трудно ремонтировать и разбирать в домашних условиях;
  • Большая инертность нагрева. Повышение температуры на поверхности происходит намного медленнее, чем у электрических приборов отопления.

Несмотря на это во многих домах старого типа этот вид радиаторов до сих пор установлен. Замена выполняется только самими жильцами за свой счет.

Чугунные радиаторы необходимо прочищать от скопившейся грязи и известкового налета минимум 1 раз в 3 года.

Стальные и биметаллические отопительные приборы

На смену чугунным конструкциям пришли современные стальные и биметаллические отопительные приборы. Их основным отличием от вышерассмотренных моделей является относительно небольшой канал для теплоносителя.

Однако это никак не сказывается на уменьшении теплоотдачи. Благодаря применяемым современным материалам с высоким коэффициентом теплопередачи, при установке отопительных приборов Kermi значительно снижается инертность всей системы. Кроме этого фактора следует учитывать и другие особенности эксплуатации стальных и биметаллических радиаторов для водяного теплоснабжения:

  • Наличие конвекционных панелей для улучшения циркуляции воздуха по поверхности радиатора;
  • Возможность установки приборов регулировки и учета тепла;
  • Доступная стоимость и простой монтаж, который можно сделать самостоятельно.

Однако при этих положительных качествах нужно знать специфику эксплуатации конкретной модели стального или биметаллического радиатора. Прежде всего – это требования к составу теплоносителя.

При выборе батареи следует уточнить – является она разборной или нет. Это поможет самостоятельно регулировать количество секций в конкретном приборе отопления.

Приборы электрического отопления

Если установка полноценного водяного теплоснабжения нецелесообразна или невозможна – монтируют электронагревательные приборы для отопления. Они отличаются от традиционных автономностью работы и компактностью. Кроме этого есть несколько типов электроприборов, у которых различный принцип генерирования тепла. Главным недостатком электрического отопления являются высокие расходы на энергоноситель. Для минимизации этого необходимы современные приборы учета на отопление – многотарифные электросчетчики. Вечером и ночью действуют льготные тарифы на потребление электроэнергии.

Электропроводка в доме должна быть адаптирована к максимальным нагрузкам от электронагревательных приборов для отопления.

Нагревательные конвекторы

Если в доме или квартире нет автономного (централизованного) отопления чаще всего устанавливают электрические нагревательные приборы. Внешне они схожи со стандартными радиаторами, но имеют существенные различия в конструкции.

Практически все электрические приборы отопления используются в качестве нагревательного элемента ТЭНы. Внутри располагается элемент с высоким показателем электрического сопротивления. При прохождении через него тока происходит преобразование электрической энергии в тепловую. Для большей эффективности ТЭНы соединяются с теплообменными пластинами из стали или алюминиевого сплава.

Существует несколько типов электрических приборов отопления для дома:

  • Конвекционные . Конструкция рассчитана на относительно быстрый нагрев воздуха в комнате за счет движения потоков через специальные щели, расположенные вверху и внизу конструкции;
  • Масляные . Для увеличения площади горячей поверхности вовнутрь радиатора заполняется жидкостью с высоким показателем энергоемкости. Повышение температуры происходит намного медленнее, чем у вышеописанных. Однако даже после выключения электронагревательного отопительного прибора его поверхность некоторое время остается горячей.

Практически во всех моделях установлены современные системы управления. Обязательным элементом является электронный термостат, который имеет датчик температуры для автоматической регулировки нагрева конвектора. Так же не осталась без внимания безопасность эксплуатации. При опрокидывании прибора активируется автоматический выключатель. Есть специальные модели нагревательных радиаторов, предназначенные для работы во влажных помещениях – ванных комнатах, кухнях. Они имеют влагостойкий корпус.

Однако для теплоснабжения большого дома электрические конвекторные радиаторы отопления устанавливать нецелесообразно из-за больших расходов электроэнергии. В этом случае лучше всего монтировать более экономное отопление ПЛЭН или ИК обогреватели.

Если суммарная мощность электрических конвекторов будет превышать 9 кВт – потребуется подключение трехфазной электросети с напряжением 380 В.

Инфракрасное отопление дома

Для повышения эффективности поддержания комфортной температуры в помещении устанавливают электрические отопительные приборы, излучающие тепловые волны в ИК диапазоне. Их принцип работы заключается не в нагреве воздуха, а поверхности предметов, попавших в зону действия.

Несомненным плюсом такой методики является уменьшение затрат на электроснабжение. Это объясняется тем, что потребление ИК обогревателей на 20-30% меньше, чем у аналогичных моделей с ТЭНами.

В настоящее время существует 2 типа нагревательных приборов отопительной системы, работающие в ИК диапазоне:

  • Пленочные обогреватели . На поверхности полимерной пленки нанесены резисторные проводники, которые излучают инфракрасные волны при прохождении по ним электрического тока. Могут монтироваться как в качестве теплого пола, так и на потолок комнаты – ПЛЭН;
  • Карбоновые обогреватели . В специальной герметичной стеклянной колбе помещена карбоновая спираль. При включении устройства она генерирует ИК волны, которые нагревают предметы. Для эффективности подобные устройства снабжены отражателем из нержавеющего металла или алюминия.

Примечательно, что последний вид приборов для отопления комнат может быть установлен в любом месте помещения. Нередко их используют для поддержания нормальной температуры вне дома в определенной зоне.

Однако для данных ИК приборов отопления частного дома есть ряд ограничений по применению. Прежде всего – нельзя закрывать поверхность пленки. Это может привести к перегреву и выходу из строя.

Газовый нагрев воздуха в комнате

Анализируя эффективность работы вышеописанных приборов остается актуальным вопрос о снижении затрат на теплоснабжение. Поэтому в качестве их альтернативы рекомендуется рассмотреть газовые приборы отопления. К ним относят не только традиционные котлы, но и другие, не менее продуктивные конструкции.

Самым простым типов этого вида нагревателей считается газовый конвектор. Он может быть подсоединен как к магистральному газу, так и к баллону со сжиженным. Горелка располагается в корпусе, который не контактирует с воздухом в комнате. Подача кислорода для поддержания процесса горения происходит через двухканальную трубу. Через нее же удаляется угарный газ.

Если же необходима мобильная модель радиатора – особый интерес представляют католические газовые приборы отопления. У них несколько иной принцип работы. Газ поступает из матрицы небольших форсунок на керамическую поверхность где и воспламеняется. В результате происходит каталитическая реакция, которая и является главным источником тепла.

Что нужно учитывать при выборе газового нагревателя?

  • Обязательно соблюдение правил безопасности. Прежде чем выполнить подключение устройства к газовой магистрали необходимо ознакомиться с инструкцией по эксплуатации;
  • Организация отвода угарных газов. Самое распространенное следствие неисправной работы обогревателя – превышение уровня СО2 в помещении;
  • Периодическая очистка форсунок от скопившейся сажи.

Нужно помнить, что все приборы отопления должны быть адаптированы к конкретным условиям эксплуатации. В первую очередь это относится к правилам техники безопасности и соблюдению режима работы.

В видеоматериале можно посмотреть пример изготовления ИК обогревателя своими руками:

Чтобы в жилище пришло долгожданное тепло, недостаточно просто сжечь топливо в топке и загрузить теплоноситель полученными калориями. Необходимо без неоправданных потерь передать драгоценный груз нуждающимся в нем помещениям. Именно такой работой заняты отопительные приборы.

Важнейшее место среди них занимают приборы водяного отопления . Вода в качестве теплоносителя имеет немало достоинств: обладает высокой текучестью, экологически безупречна, доступна.

Нагревательные приборы гидравлических систем отопления – это радиаторы, конвекторы и водяные (не путать с электрическими!) теплые полы. Есть еще гладкие и чугунные ребристые трубы, но они используются преимущественно для обогрева производственных зданий.

Радиатор в переводе с латинского – «излучающий», до 30% теплового потока он отдает в виде излучения, остальное – в виде конвекции. У конвектора на давшее ему имя явление конвекции (от латинского convectio – принесение, доставка) приходится свыше 90% теплового потока. В городских квартирах и современном загородном жилье отопительные приборы – главные «действующие герои» систем отопления. В городских квартирах и современном загородном жилье отопительные приборы – главные элементы систем отопления. Отопительные приборы за редким исключением всегда на виду, и дизайн для них немаловажен. Ему, по мнению маркетологов, отдают приоритет до 50% покупателей. Впрочем, плохо поддающаяся нормированию красота – важная, но не единственная характеристика, на которую обращает внимание покупатель.

Выбор отопительного оборудования

В первую очередь, покупатель обращает внимание на тепловую мощность прибора. . В последние годы заметно улучшилась теплоизоляция помещений . Результат – на их обогрев тратится значительно меньше тепловой энергии, чем десятилетие назад. Но за это же время в наших квартирах зримо умножилось количество бытовых приборов (компьютеры, микроволновые печи, аудиосистемы и т. д.), чье суммарное влияние на температуру воздуха в помещении невозможно игнорировать.

nota bene ОДНОТРУБНЫЕ И ДВУХТРУБНЫЕ СИСТЕМЫ

В однотрубной системе отопительные приборы подключаются последовательно. Как следствие, к каждому последующему теплоноситель приходит более холодным, чем к предыдущему. То есть температура зависит от удаленности радиатора от источника тепла. Регулированию такая система поддается с трудом, а используемые в ней отопительные приборы должны обладать малым гидравлическим сопротивлением. При двухтрубной системе отопления теплоноситель подводится по одной трубе, а отводится по другой, что позволяет осуществлять параллельное, независимое подсоединение нагревательных приборов. Еще одно преимущество «двухтрубки» в том, что она позволяет поддерживать в системе малые рабочие давления, увеличивая тем самым срок службы коммуникаций и делая возможным использование более дешевых тонкостенных радиаторов. Такие схемы наиболее распространены в странах Западной Европы. В России же, особенно в домах, возведенных в 1950–80-е годы, преобладают однотрубные системы.

Поэтому и сегодня проблема поддержания оптимальной температуры, возможность ее корректирования актуальна. Потребителю нужно регулируемое тепло. Тепло, способное привести к разумному компромиссу два стоящих в оппозиции желания – не ощущать дискомфорта и поменьше платить за дорожающую с каждым годом тепловую энергию. Такое тепло приносят в дом легко управляемые, адекватно реагирующие на изменения температуры воздуха отопительные приборы (совсем хорошо, если они работают в автоматическом режиме).

Аксиомой является и то, что потребитель должен получать абсолютно безопасное тепло. То есть полностью исключающее даже минимальную возможность механических и термических травм. Современный отопительный прибор должен быть приятен не только внешне, но и на ощупь. Несмотря на то что температура циркулирующей в нем воды может приближаться к 90–95 °C , температура кожуха не должна превышать абсолютно безопасных 40–45 °C . Это важно и для мебели, и для электрических приборов, которые нежелательно размещать рядом с отопительными. Современные радиаторы и конвекторы свели прежде довольно обширную «зону отчуждения» к нулю. И теперь в непосредственной близости от них можно безо всякой боязни размещать телевизоры, холодильники и даже дорогостоящую кожаную мебель.

Для современного горожанина, проводящего в четырех стенах почти двадцать четыре часа в сутки, очень важно, чтобы его согревало еще и здоровое тепло. Более низкая, чем у старых привычных батарей, температура наружной поверхности и увеличение доли конвекции – вот два основных фактора, обеспечивающих более равномерное распределение температуры воздуха в помещении, ликвидирующих причины появления сквозняков, а также способствующих естественной нормализации влажности, предотвращению образования в помещении плесени и грибков и, как результат, улучшению самочувствия людей, которые в этих помещениях живут.

Системы водяного отопления имеют тенденцию к уменьшению своих размеров, что в принципе не сказывается на подаче тепла.

Дизайн отопительных приборов – это не только выразительные формы или радующая глаз окраска, но и небольшие размеры. Эволюция отопительных приборов по пути уменьшения их массы и объемов происходит не из одних эстетических соображений. Маленький размер – это еще и экономично. Меньше отопительный прибор (то есть его собственная масса и количество единовременно содержащегося в нем теплоносителя), значит, меньше его тепловая инерция, он быстрее реагирует на изменение температуры, перестраиваясь в нужный режим. Например, система отопления с медно-алюминиевыми радиаторами JAGA выходит на полную мощность всего лишь за 10 минут.

Доведенное до абсолюта желание минимизировать занимаемый отопительным прибором объем выражается в производстве серий mini, представленных в ассортименте многих производителей. Эти приборы столь малы (их высота всего 8–10 см), что их можно попросту спрятать под полом, что, впрочем, совсем необязательно – радиатор или конвектор могут служить украшением интерьера ничуть в не меньшей степени, чем стильная межкомнатная дверь, оригинальный светильник или панно на стене. А вот скрыть под кожухом коммуникации (вентили и подводку) вполне разумно при любых размерах.

Из чего же их делают?

Радиаторы и конвекторы изготавливают из различных материалов – стали, чугуна, алюминия, сочетания нескольких металлов (биметаллические радиаторы).

Выбирая радиатор для своего дома, необходимо обратить внимание на следующие характеристики:

  • рабочее и испытательное (или опрессовочное) давление; обычно их соотношение находится в промежутке 1,3–1,5;
  • номинальный тепловой поток (поток, определяемый при нормированных условиях: температурный напор – 70 °C , расход теплоносителя – 0,1 кг/с при его движении в приборе по схеме «сверху вниз», атмосферное давление – 1013,3 ГПа);
  • размеры (длина, высота, глубина, межцентровое расстояние);
  • массу и производную от нее величину – удельную материалоемкость (измеряется в кг/кВт);
  • стоимость.

Радиаторы

Чугунные радиаторы. Чугун обладает высокой теплопроводностью. В силу этих причин изготовленные из него отопительные приборы можно использовать в системах с большими перепадами давления и плохой подготовкой воды (повышенная агрессивность, загрязненность, кусочки окалины). Как раз всеми этими качествами обладают преобладающие в многоэтажном строительстве однотрубные системы.

Чугунные радиаторы выпускаются уже более 100 лет. Это своего рода классика, на которой «воспитывалось» не одно поколение наших сограждан, обычно называвших этот отопительный прибор батареей. До 1960-х из батарей формировался почти весь ассортимент отопительных приборов в нашей стране. И сегодня этот, многими преждевременно списанный со счетов отопительный прибор все еще удерживает за собой до 70% российского рынка.

Современные радиаторы отопления обладают хорошим дизайном и большой теплоотдачей.

В нашей стране чаще всего используют чугунные радиаторы, состоящие из двухканальных, соединяемых друг с другом секций. Количество секций определяется расчетной поверхностью нагрева. Применяют также одноканальные, а за рубежом многоканальные (до 9 каналов в одной секции) чугунные радиаторы.

К их недостаткам относят большой вес, значительный процент заводского брака – трещины и каверны, образующиеся в результате некачественного литья и сокращающие потенциально очень продолжительный срок эксплуатации. Согласно нормативам, гарантийный срок эксплуатации радиаторов – 2,5 года со дня сдачи объекта в эксплуатацию или продажи в пределах гарантийного срока хранения, а производители и продавцы обещают по меньшей мере несколько десятилетий безупречной службы этих приборов. Иногда чугунные радиаторы упрекают в отсутствии привлекательного внешнего вида (вспомните: «батарея-гармошка»). Однако использование современного дизайна и порошковых красок способно придать шарм и этим ветеранам.

Системы, в которых задействованы чугунные радиаторы, из-за большой тепловой инерционности поддаются регулированию не без труда. Хотя и из этой ситуации есть выход, и в некоторых моделях за счет уменьшения емкости секций удается эффективно использовать терморегулирующие элементы (таковы, например, термостаты RTD-G, RTD-N фирмы Danfoss).

В данном классе отопительных приборов преобладает отечественная продукция. Среди зарубежной можно выделить чугунные секционные радиаторы фирм Roca (Испания), Viadrus (Чехия), Biasi (Италия), «Сантехлит» (Белоруссия), турецкие радиаторы Ridem .

Стальные панельные радиаторы формируются из двух отштампованных листов. В нашей стране их производство началось в 1960-е годы. От секционных чугунных их отличают меньшие вес (удельная масса на 1 кВт примерно втрое ниже) и тепловая инерция. Считаются «неженками», поскольку более чувствительны к возникающим при остановке или запуске системы гидравлическим ударам и побаиваются коррозии, провоцируемой частыми сливами или высоким содержанием кислорода в теплоносителе. В системах, где имеют место многократные скачки давления «выше ординара», рассчитывать на долгий срок службы стальных панельных радиаторов не приходится. Обычно рабочее давление приборов этого типа не превышает 9 атм.

мнение эксперта В.В. Котков
коммерческий директор Группы компаний «ХитЛайн»

Можно утверждать, что доля прогрессивных (по отношению к преобладающим пока классическим чугунным) конструкций радиаторов возрастает. Сегодня в Европе ежегодно производится до 5 млн секций алюминиевых радиаторов. В значительной степени развитие этого производства стимулируется российским рынком, где спрос на них ежегодно увеличивается на 5–10%. Поэтому ведущие западные компании стараются максимально адаптировать свою продукцию к российским условиям (существующим в нашей стране проблемам с водоподготовкой, высокому нестабильному давлению в системах центрального отопления и т. д.). Хотя, по традиции, многие российские строительные компании отдают приоритет чугунным радиаторам, неуклонно увеличивается число фирм, работающих с алюминиевыми. Ведь алюминиевый радиатор – это не просто частное техническое решение, но решение целого комплекса проблем, связанных с экономичностью, безопасностью и дизайном. Он способен вписаться в современный интерьер, его не нужно маскировать, тратя на это немалые средства.

Широкое применение стальные панельные радиаторы находят в малоэтажном строительстве. Особенно уместны они при двухтрубной системе отопления, которой отдают предпочтение в коттеджном строительстве. В многоэтажных домах их резонно устанавливать при наличии индивидуального теплового пункта, т. е. котельной. Три четверти продаж стальных панельных радиаторов приходится на частного застройщика, элитное жилье и гражданские здания. Наиболее известны в нашей стране модели фирм: VSZ (Словакия), Dia Norm, Preussag, Kermi (Германия), Korado (Чехия), DeLonghi (Италия), Stelrad (Голландия), Purmo (Польша), Roca (Испания), DemirDokum (Турция), Impulse West (Англия, но сборка в Италии), Dunaferr (Венгрия).

Трубчатые и секционные радиаторы внешне похожи, хотя конструктивно различаются – в трубчатых секции как таковые отсутствуют, а трубки соединены двумя монолитными коллекторами. Те и другие имеют привлекательный вид и органично вписываются практически в любой интерьер. Обтекаемые формы радиатора исключают возможность получения травм человеком. Малая емкость секций способствует эффективной терморегуляции. А если некоторые из его элементов изготовлены из оребренной трубы, то удается, не меняя линейных размеров, существенно увеличить мощность радиатора.

Рабочее давление трубчатых стальных радиаторов выше, чем у панельных, – 10 и более атм.

На нашем рынке этот вид радиаторов представлен преимущественно немецкими торговыми марками Bemm, Arbonia, Kermi .

Алюминиевыми называют радиаторы, изготавливаемые из сплава алюминия с кремнием (содержание самого алюминия от 80 до 98%). Алюминий – материал, обладающий высокой теплопроводностью, но предъявляющий повышенные требования к химическому составу теплоносителя. Недостатком радиаторов из алюминиево-кремниевого сплава с повышенным содержанием кремния является генерация водорода при контакте с водой. Прекрасное дизайнерское исполнение большинства радиаторов несколько портит устанавливаемый на каждом приборе автоматический клапан для спуска воздуха, т. к. в процессе эксплуатации происходит активное выделение водорода.

Значительную часть российского рынка алюминиевых радиаторов занимает продукция итальянских фирм: Rovall, Industrie Pasotti, Global, Alugas, Aural, Fondital, Giacomini, Nova Florida . Также представлены испанские радиаторы Roca, чешские Radus, английские Wester и др.

Биметаллические радиаторы. Внешне похожи на алюминиевые. Секции состоят из двух тонкостенных стальных труб (каналов для прохода теплоносителя), спрессованных под давлением с высококачественным алюминиевым сплавом. Логика этого симбиоза основывается на том, что алюминий обладает высокой теплопроводностью, а сталь прочностью, гарантирующей работу прибора при сверхнормативном давлении. Фактическими монополистами в производстве биметаллических радиаторов являются итальянские фирмы. Наиболее известная торговая марка – Sira.

Биметаллические радиаторы одновременно прочны и эффективны.

Конвекторы. Основа конструкции конвектора – заключенный в кожух нагревательный элемент. Подтекая к нему снизу, охлажденный комнатный воздух нагревается и поднимается вверх. Благодаря этому более 90% тепла передается конвекцией.

Наибольшее распространение конвекторы получили в автономных системах. Они особенно эффективны при невысоких температурах теплоносителя. Так, им по силам прогреть помещение при температуре воды всего лишь в 40 °C . Для удобства пользователя конвектор оснащается воздушным клапаном и сливной трубкой. Встроенный термостат и регулятор напора воды делают его эксплуатацию экономичной.

Конвектор особенно гармонично вписался в современную архитектурную среду, активно использующую большие окна, эркеры, зимние сады и т. д.

Конструктивно он может иметь четыре решения. Радиаторные конвекторы – комбинация двух приборов, отраженная в самом названии. Их устанавливают около окон, на полу или на небольших подставках. Плинтусные конвекторы располагаются в полу под большими окнами. Малая высота (90–100 мм) не требует ниш, а слабый конвективный поток можно усилить медленно вращающимся вентилятором. Конвекторы, заглубленные в пол, – оптимальный вариант для жилых помещений на первых этажах. Прибор помещается в подобие шахты, проходящий вдоль окна холодный воздух беспрепятственно попадает в конвектор, а поток теплого воздуха обеспечивает естественную циркуляцию в помещении. И наконец, конвекторы, закрытые декоративным экраном. В отличие от радиаторов, закрытый конвектор ничуть не теряет в теплоотдаче, напротив, экран способствует увеличению тяги.

Трубы для водяного отопления

Функционирование отопительных приборов гидравлических систем невозможно без труб. Первые полимерные (поливинилхлоридные) трубы были изготовлены в 1936 году в Германии. Первый трубопровод из них был построен там же в 1939-м. Но активное внедрение полимерных труб в системы водоснабжения и отопления началось с середины 1950-х годов, а в нашей стране с начала 1970-х годов.

Как для систем с использованием классических радиаторов, так и для теплых полов наилучшим образом подходят трубы из сшитого полиэтилена. Они не боятся кратковременного повышения температуры до +110 °C (нормальная температура их эксплуатации составляет обычно +95 °C ). При всех достоинствах у них один минус – высокая цена.

Используют в системах отопления и пропиленовые трубы . Но при этом следует учитывать высокий коэффициент теплового расширения материала. Срок службы полимерных труб может достигать 30 и более лет. Прокладка должна быть скрытой: их прячут в плинтусах, шахтах, каналах или в конструкции полов. Если в системах отопления используются полимерные трубы, то для того чтобы защитить их от превышения параметров теплоносителя, следует предусмотреть установку приборов автоматического регулирования.

Достоинства пластмассовых и металлических сочетают в себе металлопластиковые трубы. Они сочетаются с другими материалами, не пропускают кислород, а за счет гладкой внутренней поверхности сопротивление протеканию у них меньше, чем у стальных, что в условиях массового применения позволяет сэкономить немало энергии. Гарантийный срок службы – не менее 20 лет, но, как правило, в реальности он достигает 30–50 лет. Для сравнения, по данным Госстроя РФ, оцинкованные стальные трубы во внутренних системах служат в среднем 12–16 лет, а «черные» – вдвое меньше.


Kонкурирующие приборы систем водяного отопления

Тип прибора отопления Марки Цена за условную единицу оборудования, мощностью 1 кВт (в евро)
Стальной трубчатый радиатор Arbonia Kermi
«ТЕРМО-РС», «БИТЕРМО-РС»
100–160
80
Медно-алюминиевый радиатор (Бельгия, Россия) JAGA, «Изотерм» 100
Биметаллический радиатор (Россия, Чехия) SIRA, Style, Bimex 85–95
Радиатор алюминиевый литой (Италия) Elegance, Nova Florida, Calidor Super, Sahara Plus, Global MIX, Global VOX 64–75
Радиатор алюминиевый экструзионный (Италия, Россия) Opera
РН («Ступинский радиатор»)
63
50
Стальной панельный радиатор Kermi, Korado, DeLongi, Stelrad 50
Конвектор (Россия) «ТБ Универсал» 25
Чугунный радиатор МС-140
Demir Dokum, Roca
25
65

Tеплые полы

От труб логично совершить плавный переход к водяным теплым полам. Эта система отопления обладает многими достоинствами. Во-первых, низкая (40–55 °C ) температура теплоносителя способствует экономии энергии. Во-вторых, благодаря участию в эмиссии тепла всей поверхности пола обеспечивается почти идеальное горизонтальное и близкое к идеальному вертикальное распределение температур. Так, если температура поверхности пола составит 22–25 °C , то температура воздуха на уровне головы – 19-22 °C . Люди, согласно исследованиям гигиенистов, чувствуют себя наиболее комфортно, если голове немного холоднее, чем ногам. В жаркое время года, пуская по трубопроводам воду с температурой 10–12 °C , можно эффективно охлаждать помещение. В-третьих, водяные теплые полы дают возможность рационального использования площади жилого помещения.

В новых зданиях с наливными бетонными полами система напольного отопления состоит из нескольких слоев: бетонная плита, гидро-, звуко- и теплоизоляция, пленка, трубы, бетонная стяжка (используется самый обычный бетон марки не ниже М-300), цементный слой для выравнивания пола и покрытие. В старых зданиях используют метод сухой прокладки, когда отопительные трубы устанавливают в изоляции несущего слоя в специальных металлических пластинах, обеспечивающих равномерное распределение тепла.

Водяной теплый пол можно установить и под деревянным, смонтированным по балкам перекрытия. Для этого из доски, ДСП, влагостойкой фанеры или ЦСП (цементно-стружечной плиты толщиной не менее 20 мм) делается черновой пол.

Крепление труб в контурах осуществляется с помощью арматурной сетки и проволоки, крепежной ленты и монтажных скоб.

В соответствии с российскими нормами, средняя температура обогреваемого пола не должна превышать 26 °C . Поэтому, прежде чем поручать водяному теплому полу роль основной системы отопления, необходимо тщательно рассчитать, хватит ли для помещения «снимаемого» с него тепла или все же необходима дублирующая система.

Качество и эффективность работы системы отопления влияет на создание комфортной среды в жилом помещении. Один из основных элементов отопительной системы – радиатор, который передает тепло от нагретого теплоносителя с помощью излучения, конвекции и теплопроводности.

Подразделяются на отдельные группы в зависимости от материала изготовления, конструкции, формы, применения.

Одной из важных деталей, на что нужно обращать внимание при выборе - материал изготовления. Современный рынок предлагает несколько вариантов: алюминиевые, чугунные, стальные, биметаллические отопительные приборы.

Теплообменники из алюминия комплексно обогревают помещение путем теплового излучения и конвекции, происходящей посредством движения нагретого воздуха от нижних секций отопителя к верхним.

Главные характеристики:

  • Рабочее давление от 5 до 16 атмосфер;
  • Тепловая мощность одной секции – 81–212 Вт;
  • Максимальная температура нагрева воды – 110 градусов;
  • pH воды составляет 7–8;
  • Срок службы составляет 10–15 лет.

Существует два метода изготовления:

  1. Литьевой.

При повышенном давлении изготавливаются отдельные секции из алюминия с добавлением кремния (не более 12%), которые скрепляются в один отопительный прибор. Количество секций варьируется, к одной секции возможно присоединить дополнительные.

  1. Метод экструзии.

Этот способ дешевле литьевого и подразумевает изготовление на экструдере вертикальных частей батареи, а коллектора – из силумина (сплава алюминия с кремнием). Детали соединяются, добавление или сокращение секций невозможно.

Преимущества:

  1. Высокие показатели теплопроводности
  2. Легкий вес, удобство монтажа
  3. Повышенный уровень теплоотдачи, которому способствуют конструктивные особенности теплообменника.
  4. Современный дизайн, позволяющий вписываться в любой интерьер.
  5. Благодаря уменьшенному объему теплоносителя в секциях, алюминиевые агрегаты быстро нагреваются.
  6. Конструкция батареи позволяет встраивать терморегуляторы, термоклапаны, которые способствуют экономному расходу тепла, регулируя нагрев теплоносителя до необходимой температуры.
  7. Легки в монтаже, установка возможна без привлечения профессионалов.
  8. Внешнее покрытие батареи препятствует образованию отслоений краски.
  9. Низкая стоимость.

Недостатки:

  1. Чувствительны к ударам и прочим физическим воздействиям, а также скачкам давления. Эти батареи противопоказаны к установке на промышленных предприятиях по причине высокого давления в отопительной системе.
  2. Необходимость постоянно поддерживать уровень pH воды в пределах допустимого значения.
  3. Загрязненный теплоноситель – вода с твердыми частицами, химическими примесями - повреждает внутренний защитный слой стенок, вызывая их разрушение, образование коррозии и засоров, что снижает срок эксплуатации. Необходима установка и чистка фильтров.
  4. Алюминий в реакции с кислородом в воде окисляется, в результате чего освобождается водород. Это приводит к газообразованию в отопительной системе. Чтобы не произошло разрыва, требуется установка устройства для спуска воздуха, которое нуждается в постоянном обслуживании.
  5. Стыки между секциями подвержены образованию протечек.
  6. Алюминиевые радиаторы несовместимы с медными трубами , которые часто используются в современных системах отопления. При их взаимодействии происходят процессы окисления.
  7. Слабая конвекция.

Характеристики:

  • Теплоотдача – 1200–1800 Вт;
  • Показатель рабочего давления – от 6 до 15 атмосфер;
  • Температура горячей воды составляет 110–120 С.
  • Толщина стали – от 1,15 до 1,25 мм.

Преимущества:

  1. Малая инерционность. Стальной теплообменник очень быстро нагревается и начинает отдавать тепло помещению
  2. Повышенная теплоотдача путем теплового излучения и конвекции
  3. Долгий срок службы благодаря несложной конструкции
  4. Удобство монтажа
  5. Легкий вес
  6. Низкая стоимость
  7. Привлекательный внешний вид, оригинальный дизайн. Стальные изготавливаются в различных формах, позволяющих размещать их вертикально, горизонтально и под углом
  8. Совместимость с различными материалами, используемыми в качестве креплений
  9. Высокий уровень энергосбережения
  10. Установка регуляторов температуры
  11. Несложная конструкция обеспечивает легкий уход

Недостатки:

  1. Низкая устойчивость к коррозии. Агрегаты из самой толстой стали выдерживают срок эксплуатации не более десяти лет.
  2. Нельзя длительное время оставлять без воды внутри, что не подходит для централизованного отопления.
  3. Неспособность выдерживать сильные гидроудары и скачки давления, особенно в местах сварных швов.
  4. Если внешнее покрытие было изначально нанесено с изъянами, со временем оно начнет отслаиваться.

Модели стальных радиаторов различаются по типу подключения - оно может быть боковым или нижним. Универсальным считается нижнее подключение, оно неброское в интерьере, но дороже по стоимости.

В зависимости от количества панелей и конвекторов, или внутренних секций, существует несколько типов.

Тип 10 имеет одну панель без конвектора, 11 – одну панель и один конвектор, 21 – две греющих панели и одну внутреннюю секцию, и так далее по аналогии разделяются типы 22, 33 и прочие. Трехпанельные теплообменники имеют достаточно тяжелый вес, медленнее нагреваются и требуют более сложного ухода.

Изготавливаются из нескольких одинаковых секций, вылитых из чугуна и герметично соединенных друг с другом. При установке подобного отопителя необходимо определиться с количеством секций, которое зависит от площади помещения, количества окон, высоты этажа, углового размещения квартиры.

Характеристики:

  • Выдерживаемое давление 18 атмосфер;
  • Температура горячей воды – 150 C;
  • Мощность 100–150 Вт;

Преимущества:

  1. Устойчивость к образованию коррозии. Чугун – износостойкий материал, качество теплоносителя не влияет на функциональность.
  2. Продолжительное время после прекращения нагрева сохраняет тепло.
  3. Срок эксплуатации 30 лет и более.
  4. Совместимость с другими материалами.
  5. Повышенная теплоотдача благодаря вертикальному расположению внутренних ребер.
  6. Термостойкость, прочность.
  7. Благодаря внутреннему диаметру и объему секций создается минимальное гидравлическое сопротивление и не случаются засоры.

Недостатки:

  1. Тяжелый вес, создающий трудности с монтажом и перемещением.
  2. Медленный нагрев.
  3. Невозможность встраивания регулятора температуры.
  4. Сложность в уходе и окрашивании.
  5. Внешнее покрытие не устойчиво, может отслаиваться и шелушиться. По этой причине возникает необходимость периодического окрашивания батареи.
  6. Непрезентабельный внешний вид.
  7. Повышенные затраты топлива в связи с большим внутренним объемом.
  8. У чугунных теплообменников пористая внутренняя поверхность, собирающая на себе загрязнения, которые со временем приведут к ухудшению теплопроводных качеств батареи.

К этому виду относятся устройства с алюминиевым корпусом и стальными трубами внутри. Они наиболее распространены при установке в жилых помещениях.

Характеристики:

  • Показатель рабочего давления – от 18 до 40 атмосфер;
  • Тепловая мощность – 125–180 Вт;
  • Допустимая температура теплоносителя составляет от 110 до 130 градусов;
  • Гарантийный срок эксплуатации в среднем 20 лет.

Разновидности:

  1. Биметаллические на 100%, т. е. внутренний сердечник состоит из стали, внешняя часть – из алюминия. Они прочнее.
  2. Биметаллические на 50% – из стали состоят только те трубы, которые усиливают вертикальные каналы. По стоимости они дешевле, чем первый тип, и нагреваются быстрее.

Преимущества:

  1. Продолжительный срок службы без необходимости в техническом обслуживании.
  2. Повышенный уровень теплопередачи. Это достигается за счет быстрого нагрева алюминиевых панелей и небольшого внутреннего объема стального сердечника.
  3. Прочность, надежность, устойчивость к механическим воздействиям и скачкам давления.
  4. Устойчивость к образованию коррозии за счет использования высокопрочной стали со специальным покрытием.
  5. Легкий вес, удобство монтажа.
  6. Эстетичный внешний вид, который впишется в интерьер.

Недостатки:

  1. Дорогостоящие.
  2. Во время спуска воды из отопительной системы, при одновременном воздействии воздуха и воды, стальной сердечник может подвергаться коррозии. В таком случае лучше использовать биметаллические модели с медным сердечником и алюминиевыми панелями.
  3. Алюминий и сталь отличаются показателями теплового расширения. Поэтому возможна нестабильность теплопередачи, характерные шумы и потрескивание внутри устройства, в первые годы эксплуатации.

Для правильной эксплуатации теплообменника из биметалла рекомендуется устанавливать кран для отвода воздуха и запорную арматуру на подводящую и отводящую трубу.

По конструктивным особенностям разделяются на следующие типы:

  1. Секционные
  2. Панельные
  3. Трубчатые

Приборы, состоящие из однотипных секций, соединенных вместе, внутри каждой из которых проведено от двух до четырех каналов, по которым движется теплоноситель.

Корпус с секциями собирается нужной тепловой мощности, длины, формы. Изготавливаются из различных материалов – стали, алюминия, чугуна, биметаллов.

Преимущества:

  1. Возможность устанавливать дополнительные секции или убирать лишние в зависимости от необходимой длины теплообменника и площади отапливаемого помещения.
  2. Повышенная теплоотдача, производящаяся методом излучения и конвекции.
  3. Увеличивая количество секций, повышается мощность радиатора.
  4. Низкая стоимость.
  5. Экономичность.
  6. Установка регуляторов температуры.
  7. Различное межосевое расстояние позволяет устанавливать отопитель повсеместно.

Недостатки:

  1. Стыки между секциями подвержены протечкам воды, а при резко возрастающем давлении могут разойтись.
  2. Сложности в уходе, связанные с удалением загрязнений в пространстве между секциями.
  3. Внутренняя поверхность секций имеет неровности, что создает засоры.

Состоят из двух обработанных антикоррозийной защитой металлических щитов, скрепленных между собой при помощи сварки. Внутри панелей по вертикальным каналам циркулирует теплоноситель, а к тыльной стороне присоединены ребра для увеличения площади нагреваемой поверхности в форме П.

Панельные теплообменники разделяются на одно-, двух -, и трехрядные, изготавливаются из стали.

Преимущества:

  1. Разнообразие размеров панельных щитов позволяет подбирать для отопления в соответствии с площадью помещения. В зависимости от габаритов увеличивается или уменьшается мощность. Большая площадь поверхности щитов обладает повышенной теплоотдачей.
  2. Благодаря малой инерционности, батарея быстро реагирует на смену температуры.
  3. Легкий вес.
  4. Благодаря компактной конструкции, размещение батареи возможно в труднодоступных местах помещения.
  5. Низкая стоимость.
  6. Для нагрева панельного радиатора необходимо в несколько раз меньше количества воды, чем для секционного.
  7. Эстетичный внешний вид.
  8. Удобство в монтаже из-за целостной конструкции.

Недостатки:

  1. Невозможность применения в системах с высоким давлением.
  2. Нуждаются в чистом теплоносителе без химических примесей и грязи.
  3. Невозможность увеличить или уменьшить размеры для отопления как в случае с секционным.
  4. При некачественной покраске защитным материалом возможно образование коррозии.
  5. Чувствительность к гидроударам.

Состоят из вертикальных трубок количеством от 1 до 6, соединенных нижним и верхним коллектором. Благодаря несложной конструкции обеспечивается беспрепятственная и эффективная циркуляция теплоносителя.

Уровень теплоотдачи зависит от толщины трубок и размеров самого агрегата, которые варьируются от 30 см до 3 м. Показатель рабочего давления, выдерживаемого трубчатыми моделями, составляет до 20 атмосфер. Производятся из стали.

Главное преимущество – устойчивость к перепадам давления. Закругленные края и форма трубок не позволяют скапливаться на их поверхности пыли и другим загрязнениям. Внешний вид стильный и современный, многообразие форм позволяет создать дизайнерскую модель для любого интерьера. Прочные сварные стыки исключают протекание воды.

Недостатки: подверженность коррозии и стоимость.

Благодаря конвекции, такие радиаторы основательно прогревают воздух помещения.

При создании комфортных условий для проживания внимание уделяется деталям, которые должны гармонично вписываться в дизайн жилого или общественного помещения. Часто при воплощении дизайн-проекта, требуется органично вписать в него каждый элемент.

Отопительный прибор также имеет разновидности форм, способных создавать целостность интерьера. К таким относятся вертикальные, плоские, зеркальные, напольные, плинтусные устройства из различных материалов.

Агрегаты с вертикальным размещением были созданы для тех случаев, когда в помещении невозможна установка. Это зависит как от дизайна интерьера, так и от габаритов или нестандартной формы жилой площади.

Вертикальный теплообменник можно сделать частью интерьера и не скрывать за декоративными элементами. Главное отличие – размеры, где длина превышает ширину, и вертикальное размещение на стене. Прибор такого типа незаменим в помещении с панорамными окнами.

Вертикальные радиаторы могут быть разнообразных конструкций – панельной, трубчатой, секционной, и изготовлены из различных материалов – чугуна, стали, алюминия. По способу подключения к отопительной системе различают боковое, нижнее и диагональное.

Преимущества:

  1. Большой ассортимент форм и размеров, цветовых решений.
  2. Компактность, которая достигается за счет уменьшения длины батареи вдоль стены.
  3. Декоративность выражается также в незаметности всех его крепежных и соединительных элементов.
  4. Простота монтажа, которая достигается благодаря небольшому весу и цельности его конструкции.
  5. Большая площадь для увеличения теплоотдачи.
  6. Быстрота нагревания.
  7. Для нагрева не требуется большого количества воды, что помогает экономить.
  8. Легкость в уходе.

Недостатки:

  1. Дорогостоящий
  2. Возможно падение теплотехнических характеристик отопителя по причине того, что воздух сверху всегда будет теплее нижнего. В соответствии с этим, верхняя часть будет отдавать меньше тепла, чем нижняя.
  3. Неравномерное распределение тепла по всей площади помещения вследствие того, что излучаемое тепло скапливается в верхней части комнаты.
  4. Рекомендуется встраивать батарею с редуктором для нормализации внутреннего давления.

В остальных случаях недостатки и достоинства соответствуют тем, которые свойственны каждому типу обычных батарей – секционным, трубчатым, панельным.

Факторы, влияющие на эффективность работы:

  1. Одно- или двухтрубная сема подключения в системе. Первая является менее экономичной в расходе воды, но простая в монтаже и не требует излишних затрат.
  2. Тип подачи воды в систему – верхний, нижний, боковой.
  3. Способ подключения к отопительной системе. Универсальным считается диагональное подключение.

Результативность теплоотдачи зависит от правильности подключения к системе обогрева. Перед установкой важно утеплить часть стены для сокращения тепловых потерь.

Для компактного размещения и освобождения пространства используются плоские модели.

Характеристики:

  • Гладкая лицевая панель, не позволяющая скапливаться на ней пыли.
  • Габариты – от 30 см до 3 м.
  • Расходуется малое количество воды, что позволяет легко регулировать при помощи термостатов.
  • Нижнее и боковое подключение.
  • Используется в качестве декоративного элемента, строгих форм или ярких цветов.

Функционирование аналогичное панельным и секционным: между двумя металлическими листами циркулирует теплоноситель, в случае, если проложен ТЭН, получается электрический плоский вариант.

Рабочее давление до десяти атмосфер, максимальный нагрев воды – 110 С. Различают однопанельные, двухпанельные и трехпанельные отопители.

Главное достоинство – компактные размеры и быстрый нагрев. Помимо этого, они легки в уходе, имеют привлекательный и стильный внешний вид. Декорация плоских теплообменников позволяет вписать в любой дизайн помещения, а зеркальная поверхность заменит зеркало. Малая глубина монтажа и хороший показатель теплового излучения.

Из недостатков невозможность установки во влажных помещениях во избежание возникновения коррозии, а также высокая стоимость.

Плоские и вертикальные должны оборудоваться устройствами спуска воздуха, поскольку такое расположение вызывает разницу во внутреннем давлении.

Радиатор, идентичный обычным настенным теплообменникам, но устанавливаемый на горизонтальную поверхность. Он состоит из теплообменника с циркулирующим в нем теплоносителем, окруженным пластинами из алюминия или стали и закрытого снаружи металлической обрешеткой или защитным кожухом.

Снабжен клапаном для удаления воздуха и подсоединяется к трубам с любым диаметром. Единственное отличие от настенных вариантов – напольный радиатор крепится к полу или автономно стоит на нем.

Характеристики:

  • Показатели рабочего давления до 15 атмосфер;
  • Температура нагрева внешнего корпуса – до 60 градусов;
  • Температура теплоносителя – 110 C;
  • Размеры в длину составляют до 2 м, в высоту в среднем – 1 м.

Изготавливаются из чугуна, алюминия, стали, биметаллов. Многие из моделей трансформируются из настенных в напольные и наоборот, при помощи кронштейнов.

Достоинства:

  1. Пожаро - и травмобезопасный.
  2. Равномерный обогрев помещения.
  3. Разнообразие форм и размеров под стиль интерьера и по желанию покупателя.
  4. Использование меди в теплообменнике улучшает антикоррозийные качества, увеличивает срок службы.
  5. Встроенное электронное и автоматизированное управление.
  6. Экономичность.
  7. Установка возможна в любом месте помещения, куда подводится труба с горячим водоснабжением.
  8. Обеспечение естественной конвекции.
  9. Встроенные дополнительные функции обогревают и очищают окружающий воздух.
  10. Напольный теплообменник – удобный вариант в помещениях, в которых нет возможности установки настенных из-за веса, или установлены панорамные окна.
  11. Компактные размеры.
  12. Повышенная теплоотдача.
  13. Устойчивость к механическим воздействиям.

Недостатки:

  1. Возможны проблемы с монтажом, поскольку установка напольного радиатора подразумевает подводку труб, скрытых под полом.
  2. Стоимость с медными трубами и алюминиевыми пластинами достаточно высокая. Чугунные модели стоят дешевле, но обладают меньшей теплопроводностью. Стальные напольные модели обладают малой теплоотдачей.

Комфортную атмосферу в ванной комнате, отсутствие сырости, неприятного запаха, поддержание оптимального уровня влажности обеспечит правильно установленный радиатор.

Разделяют по способу нагрева и форме:

  1. Водяные, нагреваемые проточной водой

Присоединяются к отопительной системе дома по способу обычного настенного. Дополнительно может оснащаться терморегуляторами, с помощью которых устанавливается необходимая температура поверхности.

В качестве внешнего покрытия водяного агрегата рекомендуется использовать нержавеющую сталь, медь или латунь.

  1. Электрические

Функционирует автономно, внутри встроен нагревательный элемент, работающий от сети. Удобство монтажа. Не способен обогреть всю площадь ванной комнаты, поэтому целесообразно использовать его в совокупности с другими обогревателями, например, с системой теплый пол. К тому же подобный тип дороже в обслуживании, чем водяной.

  1. Комбинированные: водяные и электрические.

Способны функционировать от системы отопления и от сети. Из минусов – стоимость. Бывают простых форм и дизайнерских.

В зависимости от материала различают:

  1. Чугунные.

Плюсы: повышенная теплоотдача, дешевая цена, хороший срок службы.

Минусы: непривлекательный облик. Если отсутствует защитный полимерный слой, произойдет отслоение внешнего лакокрасочного покрытия, и батарея потеряет внешний вид.

  1. Стальные.

Минусы: подверженность коррозии, возникновение протечек со временем, которые под сильным давлением воды пробивают брешь.

  1. Алюминиевые.

Плюсы: легкий вес, компактный размер, привлекательный внешний вид.

Минусы: не подходят для системы с централизованным отоплением, поскольку не переносят гидроударов и загрязненного песком и химическими примесями, теплоносителя.

  1. Биметаллические.

Плюсы: срок службы (до 20 лет), хорошие показатели теплоотдачи, устойчивость к гидроударам и перепадам давления.

Минусы: стоимость.

  1. Инфракрасные.

Плюсы: удобное крепление в любом месте ванной комнаты, сохраняя полезную площадь помещения, возможность регулирования температуры, обогрев предметов, находящихся в комнате.

Минусы: высокая стоимость.

Батарею отопления в ванной комнате, независимо от типа и формы, можно закрыть декоративной панелью. Так поверхность не подвергнется внешним воздействиям при неизменном количестве излучаемого тепла.

Радиатор для квартиры

В многоквартирных домах не каждый агрегат может использоваться эффективно на протяжении долгих лет.

Необходимо учитывать особенности системы централизованного отопления:

  1. Теплоноситель имеет загрязнения в виде различных химических примесей, способных со временем вызывать коррозию.
  2. Твердые песчинки и прочие засоры с течением времени воздействуют на стены труб, взывая их истирание.
  3. Температура воды изменяется, так же, как и уровень кислотности.
  4. Скачки давления вызывают расхождение стыков сварных швов на стенках.

Параметры выбора:

  1. Указанное производителем рабочее давление в агрегате превышает давление в отопительной системе.
  2. Прибор отопления устойчив к гидроудару.
  3. Внутренняя поверхность стенок теплообменника должна быть со специальным защитным покрытием, защищающим от химического воздействия элементов друг на друга, а толщина стенок должна противостоять физическим воздействиям засоряющих частиц изнутри.
  4. Выбирать стоит с наибольшей теплоотдачей.
  5. Длительность срока службы.
  6. Внешний дизайн.

Варианты, подходящие для установки в квартире:

  1. Биметаллические.

Подходят по всем необходимым параметрам для установки и долгой службы в квартире многоэтажного дома. Выдерживают гидроудары, максимальное рабочее давление составляет до 50 атмосфер, внутренняя и внешняя обработка защитным покрытием сохраняет от коррозии и изношенности поверхности.

Легкий вес создает удобство при монтаже, а внешний вид привлекателен в любом интерьере. Единственный минус – дорогостоящий.

  1. Чугунные.

Долгий срок службы, толстые стенки, устойчивость к образованию коррозии, химически пассивный материал таких теплообменников создает условия для использования в квартире. Чугун долго сохраняет тепло по сравнению с другими материалами. Обогрев излучением эффективнее конвекции.

Хорошая теплоотдача, доступная цена, при сливании воды из системы внутренняя поверхность не ржавеет. Минусы – слишком большие скачки давления чугун может не выдержать, имеет тяжелый вес и создает неудобства при монтаже.

Не подходят для установки в квартире:

  1. Стальные.

Не выдерживают давления, характерного для системы централизованного отопления, несмотря на хорошую теплоотдачу и экономичность использования ресурсов.

  1. Алюминиевые.

Алюминий быстро подвергается коррозии в соединении с водой с химическими примесями и ее уровнем pH, не выдерживает сильного давления в отопительной системе.

Подходят биметаллические и чугунные. Если высота дома составляет более пяти этажей, и в квартире изначально были установлены не чугунные батареи, рекомендуется монтировать биметаллические.

Для правильного выбора отопителя в частный дом нужно опираться на следующие особенности автономной системы отопления:

  1. В отличие от централизованной отопительной системы, автономная работает при небольшом давлении и без примесей химических веществ.
  2. Отсутствие больших перепадов давления.
  3. Уровень кислотности воды относительно постоянный.

Перед выбором необходимо совершить точный расчет выделяемой тепловой энергии в соответствии с площадью помещений.

Следует учитывать тепловые потери здания, чтобы правильно подобрать мощность. Немаловажными факторами являются его размеры, а также соотношение цены и качества.

Особенности:

  1. Стальные.

Секционные и панельные типы представляют собой доступный по цене вариант с хорошей теплоотдачей и привлекательным внешним видом. В частном доме с большими оконными проемами позволяет перекрыть доступ холодного воздуха извне.

Трубчатые стальные аналогичны по положительным характеристикам, но цена более высокая.

Плюсы стальных теплообменников при использовании в частном доме: легкий вес, удобные размеры, долгий срок эксплуатации, экономичность и отсутствие окисляемости от некачественного теплоносителя.

Минусы: необходимость постоянной заполненности водой во избежание появления коррозии, обслуживание раз в три года для исключения засоров внутри батареи, а также чувствительность к механическим воздействиям.

  1. Алюминиевые.

Благодаря своей большой тепловой мощности, алюминиевый теплообменник подходит для автономной системы отопления. Для длительной службы нужно следить за уровнем pH воды.

При выборе подобного типа радиатора нужно сделать точный расчет по площади помещения, иначе существует риск перепада температур между полом и потолком. Должны быть снабжены датчиками температуры, давления и грязевыми фильтрами.

  1. Биметаллические.

Характеристики подходящие для использования в частном доме, но стоимость высокая. Поскольку автономная система отопления не требует сопротивления мощным скачкам давления и агрессивной среде теплоносителя, можно найти выгодный вариант с необходимыми для качественной службы параметрами.

Стоимость биметаллического радиатора окупится по причине длительности срока службы.

  1. Чугунные.

Благодаря тому, что чугунный радиатор медленно остывает, можно экономить на топливных ресурсах. Повышенная устойчивость к коррозии и прочность в соотношении с низкой стоимостью способны обеспечить длительный срок эксплуатации, что подойдет для отопления частного дома.

Недостаток – требуется периодический уход, чистка, покраска, необходимость прочного крепления чугунной батареи.