По цвету

Как считать длину контура заземления. Практическая работа. Расчет защитного заземления. Калькулятор расчета заземления

) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

Формула расчета сопротивления заземления одиночного вертикального заземлителя:


где:
ρ - удельное сопротивление грунта (Ом*м )
L - длина заземлителя (м)
d - диаметр заземлителя (м)
T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π - математическая константа Пи (3,141592)
ln - натуральный логарифм

Для электролитического заземления ZANDZ формула расчета сопротивления заземления упрощается до вида:

- для комплекта ZZ-100-102

Вклад соединительного заземляющего проводника здесь не учитывается.

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор - расстояние между заземляющими электродами. В формулах расчета заземления этот фактор описывается величиной "коэффициент использования ".

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов - для модульного
  • не менее 7 метров - для электролитического

Соединение электродов в заземлитель

Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

Сечение проводника часто выбирается - 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

Для частного дома без молниеприемников достаточно медного провода сечением 16-25 мм² .

Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления ".

Сервис расчета вероятности удара молнии в объект

Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным , защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Для того, чтобы приступить к расчету, .

Мы продолжаем рассматривать лучший софт для электриков, и в этой статье хотелось бы остановиться на обзоре программ для расчета заземления. Перед тем, как переходить к либо на подстанции, первым делом необходимо рассчитать сопротивление защитного заземления, а также количество электродов и длину горизонтального заземлителя. Помимо этого пригодятся рассчитанные данные, касающиеся сечения ГЗШ, главного PE-проводника и даже расчета шагового напряжения. Все это можно сделать, используя специальные программы, о которых мы сейчас и поговорим.

«Электрик»

Первый программный продукт, который хотелось бы рассмотреть, называется «Электрик». Мы уже говорили о нем, когда рассматривали лучшие . Так вот и с вычислениями параметров заземляющего контура «Электрик» может запросто справиться. Преимущество данного продукта заключается в том, что он достаточно прост в использовании, русифицирован и к тому же есть возможность бесплатного скачивания. Увидеть интерфейс программы вы можете на скриншотах ниже:



Все, что вам нужно – задать исходные данные, после чего нажать кнопку «Расчет контура». В результате вы получите не только подробную методику вычислений с используемыми формулами, но и чертеж, на котором будет изображен готовый контур заземления. Что касается точности расчетных работ, то тут мы рекомендуем использовать только самые последние версии программы, т.к. в устаревших версиях множество недоработок, которые были устранены со временем. Если вам нужно рассчитать заземляющий контур для частного дома либо более серьезных сооружений, к примеру, котельной либо подстанции, рекомендуем использовать данный продукт.

Расчет заземления в программе Электрик показан на видео:

«Расчет заземляющих устройств»

Название второй программы говорит само за себя. Благодаря ей можно рассчитать не только контур заземления, но и молниезащиты, что также крайне необходимо. Интерфейс программки довольно простой, собственно, как и в рассмотренном выше аналоге. Выглядит форма для заполнения исходных данных следующим образом:

Если вам нужно выполнить простейший расчет заземляющего контура именно сейчас, можете воспользоваться нашим . Точность вычислений конечно же уступает предоставленным в статье программным продуктам, однако все же приблизительные значения вы получите, на которые и стоит ориентироваться.

«Заземление»

Еще один программный продукт, чье название говорит само за себя. Как и в предыдущих двух программках, в этой можно без проблем разобраться, т.к. интерфейс простейший и представлен на русском языке. Последняя версия программы (v3.2) позволяет не только осуществлять расчет ЗУ, но и оценивать возможность использования ЖБ фундаментов промышленных зданий в качестве защитного контура. Помимо этого программа может помочь выбрать сечение ГЗШ, PE-проводника, а также проводников системы уравнивания потенциалов. Еще одна полезная функциональная возможность продукта – расчет напряжения прикосновения и . Интерфейс вы уже встречали немного выше, выглядит он следующим образом:


Дело в том, что создатели этой программки одновременно являются и создателями «Электрик», поэтому вы можете скачать один из предоставленных в ассортименте продуктов.

«ElectriCS Storm»

Более сложной в использовании программой, для работы с которой требуются навыки моделирования, является ElectriCS Storm. Использовать ее для вычислений заземляющего контура дома не целесообразно, т.к. вы скорее всего запутаетесь и рассчитаете все с ошибками. Мы рекомендуем работать с данным софтом профессионалам в области энергетики или же студентам ВУЗов пересекающихся специальностей.

Преимуществом данного программного продукта является то, что можно осуществлять проектирование заземляющего устройства (ЗУ) и тем самым выводить 3D модель готовых защитных контуров. Помимо этого функциональные возможности программы позволяют рассчитывать электромагнитную обстановку и заземление подстанций.




Все чертежи можно сохранять в dwg формате, благодаря чему потом их можно открыть в AutoCAD.

Ну и замыкает наш список лучших программ для расчета заземления программный комплекс энергетика под названием «Акула», благодаря которому можно рассчитывать:

  • заземляющие устройства;
  • молниезащиту;
  • характеристики защитных аппаратов;
  • потери напряжения до 1 кВ;
  • мощность объектов, а также электрокотлов и кондиционеров;
  • сечение проводки;

Интерфейс также интуитивно понятен и представлен на русском языке:

«Акула» доступна для бесплатного скачивания, поэтому найти ее в просторах интернета не составит труда. Напоследок рекомендуем просмотреть очень полезное видео

Заземление необходимо для обеспечения безопасности в случае повреждения электроустройств, изоляции силовой проводки, замыкания проводников. Суть заземления сводится к снижению потенциала в месте прикосновения к заземлённой электроустановке до максимально допустимых значений.

Снижение потенциала выполняется двумя способами:

  • Зануление – соединение корпуса устройства с нулевым проводником, идущим к подстанции;
  • Заземление – подсоединение корпуса к заземляющему контуру, расположенному в грунте за пределами здания.

Первый вариант осуществляется проще, но в случае повреждения нулевого проводника перестает выполнять свои функции, а это опасно. Поэтому наличие контура заземления является обязательным условием обеспечения безопасности.

Расчет заземления предполагает определение сопротивления заземляющего устройства, которое не должно быть больше заданного техническими нормами.

Заземляющий контур

Конструкция контура заземления, виды используемых материалов, ограничены условиями, которые содержатся в документах, к примеру, в ПУЭ, правилах устройства электроустановок.

Заземляться должны все без исключения электроустановки, как на подстанции, так и на предприятии или в быту.

Наиболее распространенной конструкцией заземляющего контура является один или несколько металлических штырей (заземлителей), заглубленных в землю и соединенных между собой сварным соединением. При помощи металлического проводника контур заземления соединяется с заземляемыми устройствами.

В качестве заземлителей используются неокрашенные стальные или стальные обмедненные материалы, размеры которых не должны быть меньше приведенных ниже:

  • Прокат круглый – диаметр не менее 12 мм;
  • Уголок – не менее 50х50х4 мм;
  • Трубы – диаметром не менее 25 мм с толщиной стенок не менее 4 мм.

Чем лучше проводимость заземлителей, тем эффективнее работает заземление, поэтому самый предпочтительный вариант – использование медных электродов, но на практике это не встречается, ввиду высокой стоимости меди.

Ничем не покрытая сталь имеет высокую коррозионную способность, особенно на границе влажного грунта и воздуха, поэтому определена минимальная толщина стенок металла (4 мм).

Оцинкованный металл хорошо сопротивляется коррозии, но не в случае протекания токов. Даже самый минимальный ток вызовет электрохимический процесс, в результате чего тонкий слой цинка прослужит минимальное время.

Современные системы заземления выполняются на основе обмедненной стали. Поскольку количество меди для изготовления невысоко, то стоимость готовых материалов ненамного превышает стальные, а срок службы многократно возрастает.

Наиболее распространенными конструкциями контуров заземления являются треугольное или рядное размещение электродов. Расстояние между соседними электродами должно составлять 1.2-2 м, а глубина закладки – 2-3 м. Глубина закладки (длина электродов) во многом зависит от характеристик грунта. Чем выше его электрическое сопротивление, тем глубже должны залегать электроды. В любом случае эта глубина должна превышать глубину промерзания грунта, поскольку замерзший грунт имеет высокое омическое сопротивление. То же самое относится и к участкам земли с низкой влажностью.

Там, где возможно протекание токов высокого значения, к примеру, на подстанции или предприятии с мощным оборудованием, подход к выбору конструкции контура заземления и его расчет имеют очень большое значение для безопасности.

Факторы сопротивления заземления

Расчет защитного заземляющего устройства зависит от многих условий, среди которых можно выделить основные, которые используются при дальнейших расчетах:

  • Сопротивление грунта;
  • Материал электродов;
  • Глубина закладки электродов;
  • Расположение заземлителей относительно друг друга;
  • Погодные условия.

Сопротивление грунта

Сам по себе грунт, за несколькими исключениями, обладает низкой электропроводностью. Данная характеристика меняется, в зависимости от содержания влаги, поскольку вода с растворенными в ней солями является хорошим проводником. Таким образом, электрические свойства грунта зависят от количества содержащейся влаги, солевого состава и свойств грунта удерживать в себе влагу.

Распространенные типы грунта и их характеристики

Тип грунта Удельное сопротивление ρ, Ом м
Скала 4000
Суглинок 100
Чернозем 30
Песок 500
Супесь 300
Известняк 2000
Садовая земля 50
Глина 70

Из таблицы видно, что удельное сопротивление может отличаться на несколько порядков. В реальных условиях ситуация осложняется тем, что на разных глубинах тип грунта может быть различным и без четко выраженных границ между слоями.

Материал электродов

Эта часть расчетов наиболее проста, поскольку при изготовлении заземления используется только несколько разновидностей материалов:

  • Сталь;
  • Медь;
  • Обмедненная сталь;
  • Оцинкованная сталь.

Медь в чистом виде не используется по причине высокой стоимости, наиболее часто применяемые материалы – это чистая и оцинкованная сталь. В последнее время все чаще стали встречаться системы заземления, в которых используется сталь, покрытая слоем меди. Такие электроды имеют наименьшее сопротивление, которое имеет хорошую стабильность во времени, поскольку медный слой хорошо сопротивляется коррозии.

Наихудшие характеристики имеет ничем не покрытая сталь, поскольку слой коррозии (ржавчина) увеличивает переходное сопротивление на границе электрод-грунт.

Глубина закладки

От глубины закладки электродов зависят линейная протяженность границы касания электрода и грунта и величина слоя земли, который участвует в цепи протекания тока. Чем больше этот слой, тем меньшее значение сопротивления он будет иметь.

На заметку. Кроме этого при установке электродов следует иметь в виду, что чем глубже они располагаются, тем ближе будут находиться к водоносному слою.

Расположение электродов

Данная характеристика наименее очевидна и трудна для понимания. Следует знать, что каждый электрод заземления имеет некоторое влияние на соседние, и чем ближе они будут расположены, тем меньше будет их эффективность. Точное обоснование эффекта довольно сложное, просто следует его учитывать при расчетах и строительстве.

Проще объяснить зависимость эффективности от количества электродов. Здесь можно привести аналогию с параллельно соединенными резисторами. Чем их больше, тем меньше суммарное сопротивление.

Погодные условия

Наилучшие параметры заземляющее устройство имеет при повышенной влажности грунта. В сухую и морозную погоду сопротивление грунта резко возрастает и при достижении некоторых условий (полное высыхание или промерзание) принимает максимальное значение.

Обратите внимание! Для того чтобы минимизировать влияние погодных условий, глубина закладки электродов должна быть ниже максимальной глубины промерзания зимой или доходить до водоносного слоя для исключения пересыхания.

Важно! Последующие расчеты необходимо производить для наихудших условий эксплуатации, поскольку во всех иных случаях сопротивление заземления будет снижаться.

Методика расчета

Основным параметром расчета является необходимое значение сопротивления заземления, которое регламентируется нормативными документами, в зависимости от величины напряжения питания, типа электроустановок, условий их использования.

Строгий расчет защитного заземления, который дает значения количества и длины электродов, не существует, поэтому он выполняется на основе некоторых приближенных данных и допусков.

Для начала учитывается тип грунта, и определяется примерная длина электродов заземления, их материал и количество. Далее выполняется расчет, порядок которого следующий:

  • Определяется сопротивление растекания тока для одного электрода;
  • Рассчитывается количество вертикальных заземлителей с учетом их взаимного расположения.

Одиночный заземлитель

Сопротивление растекания тока рассчитаем, согласно формуле:

В данном выражении:

ρ – удельное эквивалентное сопротивление грунта;

l – длина электрода;

d – диаметр;

t – расстояние от поверхности земли до центра электрода.

При использовании уголка вместо трубы или проката принимают:

d = b·0.95, где b – ширина полки уголка.

Эквивалентное сопротивление многослойного грунта:

  • ρ1 и ρ2 – удельные сопротивления слоев грунта;
  • Н – толщина верхнего слоя;
  • Ψ – сезонный коэффициент.

Сезонный коэффициент зависит от климатической зоны. Также в него вносятся поправки, в зависимости от количества использованных электродов. Ориентировочные значения сезонного коэффициента составляют от 1.0 до 1.5.

Количество электродов

Необходимое количество электродов определяется из выражения:

n = Rз/(К·R), где:

  • Rз – допустимое максимальное сопротивление заземляющего устройства;
  • К – коэффициент использования.

Коэффициент использования выбирается. в соответствии с выбранным количеством заземлителей, их взаимного расположения и расстояния между ними.

Рядное расположение электродов

Количество
электродов
Коэффициент
1 4
6
10
0,66-0,72
0,58-0,65
0,52-0,58
2 4
6
10
0,76-0,8
0,71-0,75
0,66-0,71
3 4
6
10
0,84-0,86
0,78-0,82
0,74-0,78

Контурное размещение электродов

Отношение расстояния между электродами к их длине Количество
электродов
Коэффициент
1 4
6
10
0,84-0,87
0,76-0,80
0,67-0,72
2 4
6
10
0,90-0,92
0,85-0,88
0,79-0,83
3 4
6
10
0,93-0,95
0,90-0,92
0,85-0,88

Не всегда расчет контура заземления выдает необходимое значение, поэтому, возможно, его потребуется произвести несколько раз, изменяя количество и геометрические размеры заземляющих электродов.

Измерение заземления

Для измерения сопротивления заземления используются специальные измерительные приборы. Правом измерения заземления обладают организации с соответствующим разрешением. Обычно это энергетические организации и лаборатории. Измеренные параметры вносятся в протокол измерения и хранятся на предприятии (в цеху, на подстанции).

Расчет сопротивления заземления представляет сложную задачу, в которой необходимо учитывать множество условий, поэтому рациональнее воспользоваться помощью организаций, которые специализируются в данной области. Для решения задачи можно произвести расчеты на он-лайн калькуляторе, пример которых можно найти в интернете в свободном доступе. Программа калькулятора сама подскажет, какие данные необходимо учитывать при вычислениях.

Видео

Заземление - одна из основных мер безопасности при использовании электрических приборов. В случае износа внутренней изоляции под напряжением может оказаться внешний корпус техники, при касании к которому может случится поражение электрическим током. Именно для предотвращения таких происшествий и организуется монтаж заземления. А чтобы защитная конструкция была максимально эффективной, необходимо провести её расчёт заземления, который может отличаться в зависимости от множества исходных факторов.

Виды заземляющих конструкций

Для организации заземления используются проводники из металлоконструкций различной формы (балка, труба, уголок и так далее). Эти базисные элементы могут быть использованы в одной из трёх основных систем:

  • С использование одиночного глубинного заземлителя;
  • Монтаж комплексной модульной конструкции;
  • Организация электролитического заземления.

Вне зависимости от типа выбранной конструкции, её сопротивление должно укладываться в определённые рамки. Для трёхфазной сети на 380 Вольт сопротивление заземления должно составлять не более 4 Ом. Более распространённая однофазная сеть на 220 Вольт потребует не более 8 Ом. Также предварительные расчёты позволяют заранее определиться с количеством необходимых материалов, что даёт возможность существенно сэкономить.

Формула расчёта одиночного заземлителя

Существует ряд факторов, влияющих на окончательный результат расчёта заземляющей конструкции, а именно:

  • Используемые материалы (решающие значение имеет вид металла, но немаловажным могут быть и показатели электролита);
  • Форма элементов-электродов (влияет незначительно);
  • Расстояние между элементами электродами;
  • Глубина, на которую погружается монтируемый контур.

Необходимо отметить, что для получения системы, имеющий сопротивление в 4–8 Ом, применяемые металлические элементы должны обладать определёнными минимальными параметрами:

  • Плоская балка - 12 мм в ширину, 4 мм в высоту;
  • Уголок - 4 мм в высоту
  • Шест - диаметр не менее 10 мм;
  • Труба - толщина не менее 3.5 мм.

Расчёт защитного заземления можно провести при помощи специализированного программного обеспечения или онлайн-калькуляторов. Но для их правильного использования необходимо знать общую формулу, по которой проводятся вычисления и значение всех переменных. Традиционно в рассматриваемой формуле используются следующие обозначения:

  • R - расчётное заземление (Ом);
  • L - протяжённость заземляющего элемента-заземлителя (м);
  • d - диаметр элемента (м);
  • T - заглубление: расстояние между от середины каждого заземляющего элемента до поверхности грунта (м);
  • ρ - сопротивление грунта (Ом×м). Смотрите таблицу.
  • π - число Пи (3.14)

Расчёт такого типа контура заземления производится по такой формуле:

Измерить все перечисленные значения не составить большой трудности, за исключением разве что параметра ρ. Произвести эту процедуру можно самостоятельно при помощи Омметра, но нужно понимать, что полученные данные могут существенно изменяться при изменении температуры, влажности и других параметров окружающей среды. Поэтому гораздо удобнее будет воспользоваться усреднёнными табличными данными:

Формула расчёта системы заземлителей

С целью достижения оптимального значения сопротивления создаваемой конструкции одиночные заземлители можно расположить в ряд или сформировать из них замкнутый контур (круг, прямоугольник или любую другую фигуру). Для расчёта такого заземления в указанную выше формула войдут дополнительные параметры:

  • R1 - искомое сопротивление (Ом);
  • R - сопротивление, вычисленное по базовой формуле (Ом);
  • N - число элементов в системе заземлителей;
  • Ки - коэффициент использования.

О последнем параметре необходимо рассказать подробнее. Вокруг каждого электрода, используемого для заземления электрического тока, можно представить воображаемую зону, в которой его эффективность достигает 90 %. Она формируется из всех точек, удалённых от поверхности электрода на расстояние, равное его длине. При расчёте заземление необходимо избегать пересечения этих зон, что позволяет достичь максимального коэффициента полезного действия формируемой системы.

Для подсчётов удобнее всего пользоваться табличными значениями, полученных в результате практического применения формулы.

Сама же формула выглядит следующим образом:

Таким образом, если предварительно вычислить переменную и взять её за константу, то по данной формуле можно вычислить оптимальный набор электродов, необходимый для создания заземляющей конструкции:

При это стоит учитывать, что скорее всего полученное значение будет дробным, поэтому его необходимо будет округлить в большую сторону.

Формула расчёта электролитического заземления

В упрощённой модели электролитическую систему заземления можно описать как металлическую трубу, заполненную веществом-электролитом. Это вещество повышает сопротивление всей конструкции и, что более важно, способствует сохранению её параметров с течением времени. Это достигается за счёт того, что со временем электролит проникает в почву и накапливается в ней.

Помимо описанных выше параметров в формуле расчёта электролитического заземления используется параметр C, который описывает концентрацию электролита в почве. Его допустимые значения могут колебаться в промежутке между 0.5 и 0.05. Чем дольше рассматриваемая система находится в грунте, тем меньше становится значение этого параметра: если при начале установки он равнялся 0.5, то через полгода он составить всего 0.125 (но дальнейшее его падение прекратиться).

В этом случае требуемая формула будет такой:

Если в монтируемой системе присутствует несколько электродов электролитического типа, тогда её сопротивление может быть рассчитано по формуле из предыдущего раздела. С той лишь разницей, что коэффициент использования тут будет несколько иной:

В данной статье мы рассмотрели основные типы электрического заземления и все необходимые формулы для их расчёта. Очевидно, что в основе всех вычислений лежит расчёт контура одиночного заземления, в то время как два основных вида получаются при помощи его расширения и доработки. Стоит ещё раз указать на то, что большую одну из ключевых ролей в организации эффективного заземления играет расстояние между электродами, которое не должно быть меньше их отдельной длинны. Все приведённые выше вычисления можно существенно упростить, если воспользоваться специализированным программным обеспечением или онлайн-инструментами. Обладая минимум знаний о том, какие параметры участвуют в расчёте заземления, эти утилиты позволят существенно сократить время проведения работ, при этом обеспечивая довольно высокую точность.

Видео по теме

Расчет заземляющих устройств сводится главным образом к расчету собственно заземлителя, так как заземляющие проводники в большинстве случаев принимаются по условиям механической прочности и стойкости к коррозии по ПТЭ и ПУЭ. Исключение составляют лишь установки с выносным заземляющим устройством. В этих случаях рассчитываются последовательно включаемые сопротивления соединительной линии и заземлителя, так, чтобы их суммарное сопротивление не превышало допустимого.

Следует особо выделить вопросы расчета заземляющих устройств для заполярных и северо-восточных районов нашей страны. Для них характерны многомерзлые грунты, имеющие удельное сопротивление поверхностных слоев на один - два порядка выше, чем в обычных условиях средней полосы СССР.

Расчет сопротивления заземлителей в других районах СССР производится в следующем порядке:

1. Устанавливается необходимое по ПУЭ допустимое сопротивление заземляющего устройства r зм. Если заземляющее устройство является общим для нескольких электроустановок, то расчетным сопротивлением заземляющего устройства является наименьшее из требуемых.

2. Определяется необходимое сопротивление искусственного заземлителя с учетом использования естественных заземлителей, включенных параллельно, из выражений

(8-14)

где r зм -допустимое сопротивление заземляющего устройства по п. 1, R и-сопротивление искусственного заземлителя; R е-сопротивление естественного заземлителя. Определяется расчетное удельное сопротивление грунта расч с учетом повышающих коэффициентов, учитывающих высыхание грунта летом и промерзание зимой.

При отсутствии точных данных о грунте можно воспользоваться табл. 8-1, где приведены средние данные по сопротивлениям грунтов, рекомендуемые для предварительных расчетов.

Таблица 8-1

Средние удельные сопротивления грунтов и вод, рекомендуемые для предварительных расчетов

Примечание. Удельные сопротивления грунтов определены при влажности 10-20% к массе грунта

Измерение удельного сопротивления для получения более надежных результатов производят в теплое время года (май - октябрь) в средней полосе СССР. К измеренному значению удельного сопротивления грунта в зависимости от состояния грунта и от количества осадков вводятся поправочные коэффициенты к, учитывающие изменение вследствие высыхания и промерзания грунта, т. е. Р расч =Р к

4. Определяется сопротивление растеканию одного вертикального электрода R в.о. формулам табл. 8-3. Эти формулы даны для стержневых электродов из круглой стали или труб.

При применении вертикальных электродов из угловой стали в формулу вместо диаметра трубы подставляется эквивалентный диаметр уголка, вычисленный по выражению

(8-15)

где b - ширина сторон уголка.

5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования

(8-16)

где R в.о. - сопротивление растеканию одного вертикального электрода, определенное в п. 4; R и - необходимое сопротивление искусственного заземлителя; К и,в,зм - коэффициент использования вертикальных заземлителей.

Таблица 8-2

Значение повышающего коэффициента к для различных климатических зон

Коэффициенты использования вертикальных заземлителей даны в табл. 8-4 при расположении их в ряд и в табл. 8-5 при размещении их по контуру

6. Определяется сопротивление растеканию горизонтальных электродов Rг по формулам табл. 8-3. Коэффициенты использования горизонтальных электродов для предварительно принятого числа вертикальных электродов принимаются по табл. 8-6 при расположении вертикальных электродов в ряд и по табл. 8-7 при расположении вертикальных электродов по контуру.

7. Уточняется необходимое сопротивление вертикальных электродов с учетом проводимости горизонтальных соединительных электродов из выражений

(8-17)

где R г - сопротивление растеканию горизонтальных электродов, определенное в п.6; R и - необходимое сопротивление искусственного заземлителя.

Таблица 8-3

Формулы для определения сопротивления растеканию тока различных заземлителей


Таблица 8-4

Коэффициенты использования вертикальных заземлителей, К и,в,зм, размещенных в ряд, без учета влияния горизонтальных электродов связи

Таблица 8-5

Коэффициенты использования вертикальных заземлителей, К и,в,зм, размещенных по контуру, без учета влияния горизонтальных электродов связи

Таблица 8-6

Коэффициенты использования К и,г,зм горизонтальных соединительных электродов, в ряду из вертикальных электродов

Таблица 8-7

Коэффициенты использования К и,г,зм вертикальных соединительных электродов в контуре из вертикальных электродов

8. Уточняется число вертикальных электродов с учетом коэффициентов использования по табл. 8-4 и 8-5:


Окончательно принимается число вертикальных электродов из условий размещения.

9. Для установок выше 1000 В с большими токами замыкания на землю проверяется термическая стойкость соединительных проводников по формуле (8-11).

Пример 1 . Требуется рассчитать контурный заземлитель подстанции 110/10 кВ со следующими данными: наибольший ток через заземление при замыканиях на землю на стороне 110 кВ - 3,2 кА, наибольший ток через заземление при замыканиях на землю на стороне 10 кВ - 42 А; грунт в месте сооружения подстанции - суглинок; климатическая зона 2; дополнительно в качестве заземления используется система тросы - опоры с сопротивлением заземления 1,2 Ом.

Решение 1. Для стороны 110 кВ требуется сопротивление заземления 0,5 Ом, Для стороны 10 кВ по формуле (8-12) имеем:

где расчетное напряжение на заземляющем устройстве U расч принято равным 125 В, так как заземляющее устройство используется также и для установок подстанции напряжением до 1000 В.

Таким образом, в качестве расчетного принимается сопротивление rзм = 0,5 Ом.

2.Сопротивление искусственного заземлителя рассчитывается с учетом использования системы тросы-опоры


3. Рекомендуемое для предварительных расчетов удельное сопротивление грунта в месте сооружения заземлителя (суглинка) по табл. 8-1 составляет 1000 Ом м. Повышающие коэффициенты к для горизонтальных протяженных электродов при глубине заложения 0,8 м равны 4,5 и соответственно 1,8 для вертикальных стержневых электродов длиной 2 - 3 м при глубине заложения их вершины 0,5 - 0,8 м.

Расчетные удельные сопротивления: для горизонтальных электродов Р расч.г = 4,5х100 = 450 Ом м; для вертикальных электродов расч.в= 1,8х100 = 180 Ом м.

4. Определяется сопротивление растеканию одного вертикального электрода - уголка № 50 длиной 2,5 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 8-3:

где d= d y,эд= 0,95; b = 0,95x0,95 = 0,0475 м; t =0,7 + 2,5/2 = 1,95 м;


5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования К и,в,зм = 0,6:

6. Определяется сопротивление растеканию горизонтальных электродов (полосы 40х4 мм 2), приваренных к верхним концам уголков. Коэффициент использования соединительной полосы в контуре К и,г,зм при числе уголков примерно 100 и отношении a/l = 2 по табл. 8-7 равен 0,24. Сопротивление растеканию полосы по периметру контура (l = 500 м) по формуле из табл. 8-3 равно:

7. Уточненное сопротивление вертикальных электродов


8. Уточненное число вертикальных электродов определяется при коэффициенте использования К и, г, зм = 0,52, принятом из табл. 8-5 при n = 100 и a/l = 2:

Окончательно принимается 116 уголков.

Дополнительно к контуру на территории устраивается сетка из продольных полос, расположенных на расстоянии 0,8-1 м от оборудования, с поперечными связями через каждые 6 м. Дополнительно для выравнивания потенциалов у входов и въездов, а также по краям контура прокладываются углубленные полосы. Эти неучтенные горизонтальные электроды уменьшают общее сопротивление заземления, проводимость их идет в запас надежности.

9. Проверяется термическая стойкость полосы 40 × 4 мм 2 .

Минимальное сечение полосы из условий термической стойкости при к. з. на землю в формуле (8-11) при приведенном времени протекания тока к. з. tп = 1,1 равно:

Таким образом, полоса 40 × 4 мм 2 условию термической стойкости удовлетворяет.

Пример 2 . Требуется рассчитать заземление подстанции с двумя трансформаторами 6/0,4 кВ мощностью 400 кВА со следующими данными: наибольший ток через заземление при замыкании на землю на стороне 6 кВ 18 А; грунт в месте сооружения - глина; климатическая зона 3; дополнительно в качестве заземления используется водопровод с сопротивлением растеканию 9 Ом.

Решение. Предполагается сооружение заземлителя с внешней стороны здания, к которому примыкает подстанция, с расположением вертикальных электродов в один ряд длиной 20 м; материал - круглая сталь диаметром 20 мм, метод погружения - ввертывание; верхние концы вертикальных стержней, погруженные на глубину 0,7 м, приварены к горизонтальному электроду из той же стали.

1. Для стороны 6 кВ требуется сопротивление заземления, определяемое формулой (8-12):

где расчетное напряжение на заземляющем устройстве принято равным 125 В, так как заземляющее устройство выполняется общим для сторон 6 и 0,4 кВ.

Согласно ПУЭ сопротивление заземления не должно превышать 4 Ом. Таким образом, расчетным является сопротивление заземления rзм = 4 Ом.

2. Сопротивление искусственного заземлителя рассчитывается с учетом использования водопровода в качестве параллельной ветви заземления

3. Рекомендуемое для расчетов сопротивление грунта в месте сооружения заземления (глина) по табл. 8-1 составляет 70 Ом*м. Повышающие коэффициенты к для 3-й климатической зоны по табл. 8-2 принимаются равными 2,2 для горизонтальных электродов при глубине заложения 0,7 м и 1,5 для вертикальных электродов длиной 2-3 м при глубине заложения их верхнего конца 0,5-0,8 м.

Расчетные удельные сопротивления грунта:

для горизонтальных электродов Р расч.г = 2,2 × 70 = 154 Ом*м;

для вертикальных электродов Р расч.в = 1,5х70 = 105 Ом*м.

4. Определяется сопротивление растеканию одного стержня диаметром 20 мм, длиной 2 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 8-3:

5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования К и. г. зм = 0,9

6. Определяется сопротивление растеканию горизонтального электрода из круглой стали диаметром 20 мм, приваренного к верхним концам вертикальных стержней.

Коэффициент использования горизонтального электрода в ряду из стержней при числе их примерно 6 и отношении расстояния между стержнями к длине стержнями a/l = 20/5х2 = 2 в соответствии с табл. 8-6 принимается равным 0,85.

Сопротивление растеканию горизонтального электрода определяется по формуле из табл. 8-3 и 8-8:

Таблица 8-8

Коэффициенты повышения сопротивления по отношению к измеренному удельному сопротивлению грунта (или сопротивлению заземления) для средней полосы СССР

Примечания:1) к 1 применяется, если измеренная величина Р (Rх) соответствует примерно минимальному значению (грунт влажный - времени измерений предшествовало выпадение большого количества осадков);

2) к2 применяется, если измеренная величина Р (Rх) соответствует примерно среднему значению (грунт средней влажности - времени измерений предшествовало выпадение небольшого количества осадков);

3) к3 применяется, если измеренная величина Р (Rх) соответствует примерно наибольшему значению (грунт сухой - времени измерений предшествовало выпадение незначительного количества осадков).

7. Уточненное сопротивление растеканию вертикальных электродов

8. Уточненное число вертикальных электродов определяется при коэффициенте использованияК и. г. зм= 0,83, принятом из табл. 8-4 при n = 5 и a/l= 20/2х4 = 2,5 (n = 5 вместо 6 принято из условия уменьшения числа вертикальных электродов при учете проводимости горизонтального электрода)

Окончательно принимается четыре вертикальных стержня, при этом сопротивление растеканию несколько меньше расчетного.

Выдержка из Справочника по электроснабжению промышленных предприятий

под общей редакцией А. А. Федорова и Г. В. Сербиновского