Все камни

Средние величины и показатели вариации. Коэффициент вариации

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:

Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2

Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:

Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:

Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

Часто в статистике при анализе какого-либо явления или процесса необходимо учитывать не только информацию о средних уровнях исследуемых показателей, но и разброс или вариацию значений отдельных единиц , которая является важной характеристикой изучаемой совокупности.

В наибольшей степени вариации подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды времени и в разных местах.

Основными показателями, характеризующими вариацию , являются размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Размах вариации представляет собой разность максимального и минимального значений признака: R = Xmax – Xmin . Недостатком данного показателя является то, что он оценивает только границы варьирования признака и не отражает его колеблемость внутри этих границ.

Дисперсия лишена этого недостатка. Она рассчитывается как средний квадрат отклонений значений признака от их средней величины:

Упрощенный способ расчета дисперсии осуществляется с помощью следующих формул (простой и взвешенной):

Примеры применения данных формул представлены в задачах 1 и 2.

Широко распространенным на практике показателем является среднее квадратическое отклонение :

Среднее квадратическое отклонение определяется как квадратный корень из дисперсии и имеет ту же размеренность, что и изучаемый признак.

Рассмотренные показатели позволяют получить абсолютное значение вариации, т.е. оценивают ее в единицах измерения исследуемого признака. В отличие от них, коэффициент вариации измеряет колеблемость в относительном выражении - относительно среднего уровня, что во многих случаях является предпочтительнее.

Формула для расчета коэффициента вариации.

Примеры решения задач по теме «Показатели вариации в статистике»

Задача 1 . При изучении влияния рекламы на размер среднемесячного вклада в банках района обследовано 2 банка. Получены следующие результаты:

Определить:
1) для каждого банка: а) средний размер вклада за месяц; б) дисперсию вклада;
2) средний размер вклада за месяц для двух банков вместе;
3) Дисперсию вклада для 2-х банков, зависящую от рекламы;
4) Дисперсию вклада для 2-х банков, зависящую от всех факторов, кроме рекламы;
5) Общую дисперсию используя правило сложения;
6) Коэффициент детерминации;
7) Корреляционное отношение.

Решение

1) Составим расчетную таблицу для банка с рекламой . Для определения среднего размера вклада за месяц найдем середины интервалов. При этом величина открытого интервала (первого) условно приравнивается к величине интервала, примыкающего к нему (второго).

Средний размер вклада найдем по формуле средней арифметической взвешенной:

29 000/50 = 580 руб.

Дисперсию вклада найдем по формуле:

23 400/50 = 468

Аналогичные действия произведем для банка без рекламы :

2) Найдем средний размер вклада для двух банков вместе. Хср =(580×50+542,8×50)/100 = 561,4 руб.

3) Дисперсию вклада, для двух банков, зависящую от рекламы найдем по формуле: σ 2 =pq (формула дисперсии альтернативного признака). Здесь р=0,5 – доля факторов, зависящих от рекламы; q=1-0,5, тогда σ 2 =0,5*0,5=0,25.

4) Поскольку доля остальных факторов равна 0,5, то дисперсия вклада для двух банков, зависящая от всех факторов кроме рекламы тоже 0,25.

5) Определим общую дисперсию, используя правило сложения.

= (468*50+636,16*50)/100=552,08

= [(580-561,4)250+(542,8-561,4)250] / 100= 34 596/ 100=345,96

σ 2 = σ 2 факт + σ 2 ост = 552,08+345,96 = 898,04

6) Коэффициент детерминации η 2 = σ 2 факт / σ 2 = 345,96/898,04 = 0,39 = 39% - размер вклада на 39% зависит от рекламы.

7) Эмпирическое корреляционное отношение η = √η 2 = √0,39 = 0,62 – связь достаточно тесная.

Задача 2 . Имеется группировка предприятий по величине товарной продукции:

Определить: 1) дисперсию величины товарной продукции; 2) среднее квадратическое отклонение; 3) коэффициент вариации.

Решение

1) По условию представлен интервальный ряд распределения. Его необходимо выразить дискретно, то есть найти середину интервала (х"). В группах закрытых интервалов середину найдем по простой средней арифметической. В группах с верхней границей - как разность между этой верхней границей и половиной размера следующего за ним интервала (200-(400-200):2=100).

В группах с нижней границей – суммой этой нижней границы и половины размера предыдущего интервала (800+(800-600):2=900).

Расчет средней величины товарной продукции делаем по формуле:

Хср = k×((Σ((х"-a):k)×f):Σf)+a. Здесь а=500 - размер варианта при наибольшей частоте, k=600-400=200 - размер интервала при наибольшей частоте. Результат поместим в таблицу:

Итак, средняя величина товарной продукции за изучаемый период в целом равна Хср = (-5:37)×200+500=472,97 тыс. руб.

2) Дисперсию найдем по следующей формуле:

σ 2 = (33/37)*2002-(472,97-500)2 = 35 675,67-730,62 = 34 945,05

3) среднее квадратическое отклонение: σ = ±√σ 2 = ±√34 945,05 ≈ ±186,94 тыс. руб.

4) коэффициент вариации: V = (σ /Хср)*100 = (186,94 / 472,97)*100 = 39,52%

Под средней величиной в статистике понимается обобщенная количественная характеристика признака в статистической совокупности, выражающая его типичный уровень в конкретных условиях места и времени.

Средняя величина исчисляется по качественно однороднойсовокупности единиц. Различают степенные и структурные средние.

Средняя арифметическаявеличина определяется в случае, когда общий объем изучаемого признака может быть получен, путем суммирования его индивидуальных значений. Средняя арифметическая представляет собой частное от деления общего объема данного признака в изучаемом явлении на число единиц совокупности.

Средняя гармоническая используется, когда имеются индивидуальные значения признака, общий объем явления (w=xf ), но неизвестны веса (f ).

Средняя геометрическая применяется при расчете средних темпов роста.

Средняяквадратическая применяется в тех случаях, когда в исходной информации осредняемые величины представлены квадратичными мерами (например, при расчете средних диаметров труб, стволов деревьев).

Средняя хронологическая применяется для определения среднего уровня в моментном ряду динамики.

Модой дискретного вариационного ряда называется вариант, имеющий наибольшую частоту. Ряды могут быть одно и многомодальными.

Медианой дискретного вариационного ряда называется вариант, делящий ряд на две равные части.

Таблица 3.1 – Формулы расчета средних величин

Наименование средней Простая форма Взвешеннаяформа
Средняя арифметическая = (3.1) = (3.2)
Средняя гармоническая = (3.3) = (3.4)
Средняя квадратическая = (3.5) = (3.6)
Средняя геометрическая = (3.7) = (3.8)
Средняя хронологическая

(3.9)

Мода

(3.10)

Начало модального интервала;

h- длина модального интервала;

Частота модального интервала;

Частота предмодального интервала;

Частота послемодального интервала.

Медиана

(3.11)

Начало медианного интервала;

h - длина медианного интервала;

n - объем совокупности;

Накопленная частота интервала, предшествующего

медианному;

Частота медианного интервала.

Для характеристики колеблемости или рассеяния значений признака применяются абсолютные и относительные показатели вариации.

Размах вариации (R ) представляет собой разность между максимальным и минимальным значениями признака.

Среднее линейное отклонение (L) - это средняя арифметическая из абсолютных значений отклонений отдельных вариант признака от среднего значения.


Дисперсия (σ 2) представляет собой средний квадрат отклонений вариант признака от их средней величины.

Среднее квадратическое отклонение (σ) определяется как корень квадратный из дисперсии.

Относительным показателем колеблемости служит коэффициент вариации , который позволяет судить об интенсивности вариации признака, а, следовательно, и об однородности состава изучаемой совокупности.

Таблица 3.2 – Формулы расчета показателей вариации

Наименование показателя Простая форма Взвешеннаяформа
Размах вариации

R=х max - х min (3.12)

Среднее линейное отклонение L = (3.13) L = (3.14)
Дисперсия = (3.15) (3.16)
Среднее квадратическое отклонение (3.17) (3.18)
Коэффициент вариации

V = или V = (3.19)

Задача 3.1. По данным пяти сельскохозяйственных организаций (приложение А)определить среднюю численность работников, среднегодовую заработную плату на одного работника и показатели вариации численности работников и среднегодовой заработной платы. Сделать вывод.

Методические указания:

Среднюю численность работников на одну организацию и показатели вариации рассчитать как простые формы показателей по формулам, приведенным в таблицах 3.1 и 3.2. Все вспомогательные вычисления провести с использованием макета таблицы3.3.


Таблица 3.3 - Вспомогательная таблица для расчета показателей вариации

численности работников

Организация

Среднегодовая численность работников, чел. Отклонение от средней, чел. Квадрат отклонения
х
1
2
3
4
5
Итого -

Среднегодовую оплату труда работников и показатели вариации оплаты труда определить с использованием взвешенной формы показателей по формулам, приведенным в таблицах 3.1 и 3.2. Расчеты представить в таблице 3.4.

Таблица 3.4 - Вспомогательная таблица для расчета показателей вариации

среднегодовой заработной платы

Организация

Среднегодовая оплата труда работника, тыс. руб. Среднегодовая численность работников, чел Фонд заработной платы, тыс. руб. Отклонение от средней, тыс. руб. Отклонения Общий размер квадрата отклонений
х f х f f f
1
2
3
4
5
Итого - -

Задача 3.3. Поданным таблицы 3.5 определить средний процент рентабельности продаж в организациях за каждый год, абсолютный прирост прибыли и рентабельности по каждойорганизации и в целом по всей совокупности.Сделать вывод.

Таблица 3.5 – Финансовые результаты реализации продукции

Задача 3.4. По даннымтаблицы 3.6 определить среднюю урожайность озимой пшеницы,модальное и медианное значения, показатели вариации. Сделать вывод.

Таблица 3.6 – Распределение организаций по урожайности озимой пшеницы

Группа организаций по урожайности озимой пшеницы, ц/га Число организаций в группе () Среднее значение интервала ()
20,01 – 26,7 6
26,71 – 33,4 9
33,41 – 40,1 11
40,11 – 46,8 13
46,81 – 53,5 6
53,51 – 60,2 5
Итого 50

Задача 3.5. По данным таблицы 3.7 определить среднее число детей на одну семью, модальное и медианное значения. Ряд распределения изобразить графически. Сделать вывод.

Таблица 3.7 – Распределение семей по числу детей


Вопросы для самоподготовки

1. Что понимается под средней величиной в статистике?

2. Условия правильного применения средних величин.

3. Назовите виды и формы средних величин.

4. Что характеризует вариация признака?

5. Показатели вариации и способы их расчета.

РЯДЫ ДИНАМИКИ

Одной из важнейших задач статистики является изучение изменения экономических явлений во времени, путем построения и анализа рядов динамики. Ряд динамики представляет собой численные значения статистического показателя в последовательные моменты или периоды времени.

Графически ряды динамики изображаются линейными, либо столбиковыми диаграммами. По оси абсцисс откладываются показатели времени, а по оси ординат - уровни ряда (либо базисные темпы роста).

Введем условные обозначения:

у i – текущий (сравниваемый) уровень, i =1,2,3,…,n;

у 1 – уровень, принятый за постоянную базу сравнения (обычно начальный);

у п – конечный уровень.

Для характеристики развития явления во времени определяют показатели: абсолютный прирост, темп роста, темп прироста базисным и цепным способом, значение одного процента прироста (таблица 4.1).

Таблица 4.1- Расчет текущих показателей ряда динамики

Показатель

Метод расчета

базисный (с постоянной базой) цепной (с переменной базой)
Абсолютный прирост (А) (4.1) (4.2)
Коэффициент роста (К р) (4.3) (4.4)
Темп роста (Т р) (4.5) (4.6)
Темп прироста (Т пр) (4.7) (4.8)
Абсолютное значение 1 % прироста (Зн.1%)

Зн.1% = 0,01 у i-1 или Зн.1%= (4.9)

Для характеристики интенсивности развития явления за длительный период времени рассчитываются средние показатели динамики (таблица4.2).

Средние показатели динамики исчисляются одинаково для интервальных и моментных рядов, исключение составляет лишь расчет среднего уровня ряда.

Таблица 4.2 – Расчет средних показателей ряда динамики

Показатель Метод расчета
Средний уровень () а) интервального ряда (4.10)
б) моментного ряда с равными интервалами (4.11)
в) моментного ряда с неравными интервалами (4.12)
Средний абсолютный прирост () или (4.13)
Средний коэффициент роста () = или (4.14)
Средний темп роста (), % = · 100 % (4.15)
Средний темп прироста (), % = -100 % или =( -1)·100% (4.16)
Среднее значение 1% прироста, (4.17)

Для выявления тенденции развития в рядах динамики применяют различные методы: укрупнения временных интервалов (периодов); скользящих средних; аналитического выравнивания.

Основным условием построения и анализа ряда динамики является сопоставимость уровней во времени.

К несопоставимости приводит изменение состава или территориальных границ изучаемой совокупности, переход к другим единицам измерения, инфляционные процессы. Несопоставимыми ряды динамики являются и в том случае, если они составлены из неодинаковых по продолжительности времени периодов.

При обнаружении несопоставимости уровней ряда должна применяться процедура смыкания, если невозможен их прямой пересчет.

Смыкание может быть произведено двумя способами.

1 способ. Данные за предшествующие периоды умножаются на коэффициент перехода, который определяется как отношение показателей на тот момент времени, когда произошло изменение условий формирования уровней ряда.

2 способ. Уровень переходного периода принимается для второй части ряда за 100% и от этого уровня определяются соответствующие показатели. При этом получается сопоставимый ряд относительных величин.

Иногда в динамических рядах отсутствуют промежуточные или последующие уровни. Их можно исчислить с помощью методов интерполяции (нахождение промежуточного неизвестного уровня, при наличии известных соседних уровней) и экстраполяции (нахождение уровней за пределами изучаемого ряда, т.е. продление в будущее тенденции, наблюдавшейся в прошлом, или в прошлое на основании текущих уровней).

Пример 4.1 . По имеющимся данным о цене производителей на автомобильный бензин рассчитать показатели ряда динамики. Сделать вывод.

Таблица 4.3 - Расчет показателей ряда динамики

Цена производителей автомобильного бензина, руб./т

Абсолютный прирост, руб.

Коэффициент роста

прироста, %

Значение 1% прироста, руб.

базисный цепной базисный цепной базисный цепной базисный цепной
А б А ц К р б К р ц Т р б Т р ц Т пр б Т пр ц Зн.1%
2006 9159,0 - - - - 100,0 100,0 - - -
2007 10965,0 1806,0 1806,0 1,197 1,197 119,7 119,7 19,7 19,7 91,59
2008 14268,0 5109,0 3303,0 1,558 1,301 155,8 130,1 55,8 30,1 109,65
2009 8963,0 -196,0 -5305,0 0,979 0,628 97,9 62,8 -2,1 -37,2 142,68
2010 13831,0 4672,0 4868,0 1,510 1,543 151,0 154,3 51,0 54,3 89,63
Средние показатели 11437,2 107,16

Вывод: расчеты показали, что средняя цена бензина в динамике за 5 лет составила11437,2 руб. за 1 т. При этом ежегодно наблюдался рост цены в среднем на 1168,0 руб. или на 10,9%.Один процент прироста соответствовал107,16 руб.

Пример 4.2 . Методом аналитического выравнивания определить тенденцию изменения средней цены производителей лука репчатого. Сделать вывод.

Методические указания:

Метод аналитического выравнивания состоит в подборе для данного ряда динамики такой теоретической линии, которая выражает основные черты или закономерности изменения уровней явления. Чаще всего при выравнивании используют линейное уравнение:

= а + bt, (4.18)

где а – свободный член уравнения;

b – коэффициент;

t – порядковый номер года.

Параметры а и b определяют способом наименьших квадратов, решая систему двух нормальных уравнений:

(4.19)

Систему можно упростить, перенеся начало отсчета времени t (начало координат) в середину ряда динамики. Тогда∑t = 0 и система примет вид:

Отсюда получаем:

(4.20)

Заполним вспомогательную таблицу 4.4.

По имеющимся данным найдем параметры «а» и «b» следующим образом:

а = ;b = .

Уравнение прямой примет вид: = 6,53 + 0,49t.

Подставим значения t в уравнение и найдем теоретические (выравненные) уровни средней цены производителей репчатого лука (последний столбец таблицы 4.4).

Таблица 4.4 - Вспомогательная таблица

Год Средняя цена производителей лука репчатого, руб./кг у Номер года t Квадрат номера года t 2 Произведение параметров уt Выравненные значения =а+bt
2002 4,40 -4 16 -17,59 4,57
2003 5,46 -3 9 -16,38 5,06
2004 5,48 -2 4 -10,96 5,55
2005 4,87 -1 1 -4,87 6,04
2006 7,56 0 0 0,00 6,53
2007 8,36 1 1 8,36 7,02
2008 6,70 2 4 13,40 7,51
2009 6,19 3 9 18,58 8,00
2010 9,72 4 16 38,88 8,49
Итого 58,73 0 60 29,41 58,73

Фактические и теоретические уровни цен изобразим на рисунке 4.1.

t =6,53+0,49t

Рисунок 4.1-Динамика средней цены производителей

репчатого лука, руб./кг

Вывод: расчеты показали, что средняя цена лука репчатого за 2002-2010 гг. составила 6,53 руб. за 1 кг. В среднем она ежегодно повышалась на 0,49 руб. На графике наглядно видна четко выраженная тенденция к росту цены исследуемогопродукта.

Пример 4.3. В 2007 г. на предприятии была произведена смена оборудования, что привело к несопоставимости ряда динамики (таблица 4.5). Привести его к сопоставимому виду, применив смыкание динамического ряда. Сделать вывод.

Таблица 4.5 – Динамика объемов производства продукции предприятия

а) 19,7 ∙ 1,0755 = 21,2;

б)

.

Вывод: расчеты показали, что смена оборудования на данном предприятии привела к росту объема производства продукции. При этом в динамике за 6 лет он увеличился на 4,9 млн. руб. или на 23,1 %.

Задача 4.1. Численность работников предприятия на 1.03 составила 315 чел. 6.03 уволилось 4 чел., 12.03 принято 5 чел., 19.03 принято 3 чел., 24.03 уволилось 8 чел., 28.03 принято 2 чел. Определить среднюю численность работников за март месяц.

Задача 4.2. Поголовье коров в сельскохозяйственнойорганизации на 1.01 составляло 800 гол.,15.01 было выбраковано 30 гол., 5.02 переведено из нетелей в основное стадо 55 гол., 24.02 куплено 10 гол., 12.03 продано 15 гол., 21.03 выбраковано 25 гол. Определить среднее поголовье коров за первый квартал.

Задача 4.3. По данным приложенияВ о средней цене производителей на отдельные виды товаров за последние пять лет определить базисные и цепные показатели ряда динамики, показатели динамики в среднем за период. Расчеты представить в табличной форме. Сделать вывод.

Задача 4.4. Выявить общую тенденцию средней цены производителей на отдельные товары по данным приложенияВ, используя прием аналитического выравнивания.Фактические и выравненные (теоретические) уровни динамического ряда изобразить графически. Сделать вывод.

Задача 4.5. Используя взаимосвязь показателей, определить уровни ряда динамики и недостающие в таблице 4.6 базисные показатели динамики по имеющимся данным об урожайности озимой пшеницы.

Таблица 4.6 –Вспомогательная таблица для определения урожайности озимой

пшеницы и недостающих базисных показателей динамики

Урожайность озимой

пшеницы, ц/га

Базисные показатели динамики

Значение 1% прироста, ц/га

абсолютный прирост, ц темп роста, % темп прироста, %
2002 55,1 - - -
2003 - 2,8
2004 110,3
2005
2006 17,1 0,633
2007 121,1
2008 13,5
2009
2010 20,4 0,691

Задача 4.6. Используя взаимосвязь показателей, определить уровни ряда динамики и недостающие в таблице 4.7 цепные показатели динамики среднегодового удоя молока от одной коровы в Краснодарском крае.

Таблица 4.7 - Вспомогательная таблица для определения среднегодового

удоя молока и недостающих цепных показателей динамики

Среднегодовой удой молока от одной коровы, кг

Цепные показатели динамики

Значение 1% прироста,

абсолютный прирост, кг темп роста, % темп прироста, %
2004 2784 - - -
2005 405
2006 110,5
2007
2008 152 37,65
2009 4,2
2010 -1,1

Задача4.7. До 2007 г. в состав производственного объединения входили 20 организаций. В 2007 г. в него влились еще 4 организации, и оно стало объединять 24 организации. Провести смыкание ряда динамики, используя данные таблицы 4.8. Сделать вывод.

Таблица 4.8 –Динамика объема реализации продукции объединения, млн. руб.

Вопросы для самоподготовки

1. Ряды динамики, их элементы, правила построения.Виды рядов динамики.

2. Показатели ряда динамики и порядок их расчета.

3. Приемы выявления основной тенденции развития в рядах динамики.

4. Что понимается под интерполяцией и экстраполяцией ряда динамики?

5. Как проводится смыкание рядов динамики?

Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29.
Для анализа распределения студентов по возрасту требуется:
1) построить интервальный ряд распределения и его график;
2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации;
3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.

Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n ):
n = 1 +3,322 lg N,
где N – число величин в дискретном ряде.
В нашей задаче n = 1 + 3,322lg 25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6.
После определения оптимального количества интервалов определяем размах интервала по формуле:
h = H / n,
где H – размах вариации.
H = Хмах –Х min ,
X м a x и Xmin - максимальное и минимальное значения в совокупности.
В нашей задаче h = (29 – 19)/6 = 1,67.
Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.
Таблица 1 . Вспомогательные расчеты для решения задачи

более 27,33

На основе этой группировки строится график распределения возраста студентов:


Рис. График распределения возраста студентов.
Мода – это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (13):
,
где ХMo – нижнее значение модального интервала; f Mo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; f Mo-1 – то же для интервала, предшествующего модальному; f Mo+1 – то же для интервала, следующего за модальным; h – величина интервала изменения признака в группах.
В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (13), определяем точное значение модального возраста:
Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет).
Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:
,
где XMe – нижняя граница медианного интервала; h – его величина (размах); – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; f Me – число наблюдений или объем взвешивающего признака в медианном интервале.
В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста.

Определяем точное значение медианного возраста:
Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года).
Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (несгруппированном) порядке, по общей формуле (15). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (16).
=

= .
При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин.
Таблица 2. Виды степенных средних и их применение


m

Название
средней

Формула расчета средней

Когда применяется

простая

взвешенная

Арифметическая

=

=

Чаще всего, кроме тех случаев, когда должны применяться другие виды средних

Гармоническая

ГМ =

ГМ =

Для осреднения величин с дробной размерностью при наличии дополнительных данных по числителю дробной размерности

Геометрическая

Для осреднения цепных индексов динамики

Квадратическая

=

=

Для осреднения вариации признака (расчет средних отклонений)

Кубическая

=

=

Для расчета индексов нищеты населения

Хронологическая

Для осреднения моментных статистических величин

В нашей задаче, применяя формулу (18) и подставляя вместо середины интервалов возраста ХИ , определяем средний возраст студентов: = 549,163/25 = 21,967 (года). Теперь осталось определить типичность или нетипичность найденной средней величины. Это осуществляется с помощью расчета показателей вариации. Чем ближе они к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности. При этом критериальным значением коэффициента вариации служит 1/3.
Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации.
Среднее линейное отклонение определяется по формулам:
–простое; – взвешенное.
Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (31):
= .
Дисперсия определяется по формулам:
–простая; –взвешенная.
В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации : = 2,198/21,967 = 0,100. По значению этого коэффициента для рассмотренной группы студентов делаем вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,100 < 0,333).
Применяя формулу (33), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: = = 2,561 (года).Разделив это значение на средний возраст, получим квадратический коэффициент вариации : = 2,561/21,967 = 0,117. По значению этого коэффициента для рассмотренной группы студентов можно сделать вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,117 < 0,333).
В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (34) и коэффициент асимметрии Пирсона (35):
, .
Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен.
В нашей задаче ==383,636/25 = 15,345; =2,5613= 16,797; =15,345/16,797 = 0,914 > 0, значит, распределение студентов по росту с правосторонней асимметрией. Это подтверждает и значение коэффициента асимметрии Пирсона: As = (21,967-20)/2,561 = 0,768.

Вариация -- это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

Например, работники фирмы различаются по доходам, затратам времени на работу, росту, весу, любимому занятию в свободное время и т.д.

Вариация возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Таким образом, величина каждого варианта объективна.

Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Особенно актуально оно в период формирования многоукладной экономики. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дает важную информацию (например, о продолжительности жизни людей, доходах и расходах населения, финансовом положении предприятия и т.п.) для принятия научно обоснованных управленческих решений.

Средняя величина дает обобщающую характеристику признака изучаемой совокупности, но она не раскрывает строения совокупности, которое весьма существенно для ее познания. Средняя не показывает, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом -- эти отличия велики, т.е. в одном случае вариация признака мала, а в другом -- велика, это имеет весьма важное значение для характеристики надежности средней величины.

Чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своем средней, и наоборот, -- чем меньше варианты отличаются друг от друга, тем меньше они отличаются от средней, которая в тан ком случае будет более реально представлять всю совокупность. Вот почему ограничиваться вычислением одной средней в ряде случаев нельзя. Нужны и другие показатели, характеризующие отклонения отдельных значений от общей средней.

Это можно показать на таком примере. Предположим, что одинаковую работу выполняют две бригады, каждая -- из трех человек. Пусть количество деталей, шт., изготовленных за смену отдельными рабочими, составляло:

в первой бригаде -- 95, 100, 105 (= 100 шт.);

во второй бригаде -- 75, 100, 125 (= 100 шт.).

Средняя выработка на одного рабочего в обеих бригадах одинакова и составляет= = 100 шт., однако колеблемость выработки отдельных рабочих в первой бригаде значительно меньше, чем во второй.

Поэтому возникает необходимость измерять вариацию признака в совокупностях. Для этой цели в статистике применяют ряд обобщающих показателей.

  • Ш К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации.
  • Ш Самым элементарным показателем вариации признака является размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки деталей составляет: в первой бригаде -- R1= 10 шт. (т.е. 105 -- 95); во второй бригаде -- R2= 50 шт. (т.е. 125 -- 75), что в 5 раз больше.

Это свидетельствует о том, что при численном равенстве средняя выработка первой бригады более «устойчива». Размах вариации может служить базой расчета возможных резервов роста выработки. Таких резервов больше у второй бригады, поскольку в случае достижения всеми рабочими максимальной для этой бригады выработки деталей, ею может быть изготовлено 375 шт., т.е. (3x125), а в первой - только 315 шт., т.е. (3 х 105).

Однако размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и даёт обобщённую характеристику. Простейший показатель такого типа - среднее линейное отклонение

Ш Среднее линейное отклонение d представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: ().

Среднее линейное отклонение:

Для несгруппированных данных

где n - число членов ряда;

Для сгруппированных данных

где -- сумма частот вариационного ряда.

В формулах (5.18) и (5,19) разности в числителе взяты по модулю, (иначе в числителе всегда будет ноль -- алгебраическая сумма отклонений вариантов от их средней арифметической). Поэтому среднее линейное отклонение как меру вариации признака применяют в статистической практике редко (только в тех случаях, когда суммирование показателей без учета знаков имеет экономический смысл). С его помощью, например, анализируется состав работающих, ритмичность производства, оборот внешней торговли.

Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):

§ простая дисперсия для несгруппированных данных

§ взвешенная дисперсия для вариационного ряда

Формула (5.21) применяется при наличии у вариантов своих весов (или частот вариационного ряда).

Формулу для расчета дисперсии (5.20) можно преобразовать, учитывая, что


т.е. дисперсия равна разности средней из квадратов вариантов и квадрата их средней.

Техника вычисления дисперсии по формулам (5.20), (5.21) достаточно сложна, а при больших значениях вариантов и частот может быть громоздкой.

Расчет можно упростить, используя свойства дисперсии (доказываемые в математической статистике). Приведем два из них:

первое -- если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится;

второе -- если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия соответственно уменьшится или увеличится в i2 раз. Используя второе свойство дисперсии, разделив все варианты на величину интервала, получим следующую формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

где -- дисперсия, исчисленная по способу моментов;

i - величина интервала;

новые (преобразованные) значения вариантов (А -- условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой);

Момент второго порядка;

Квадрат момента первого порядка.

Расчет дисперсии по формуле (5.23) менее трудоемок.

Дисперсия имеет большое значение в экономическом анализе. В математической статистике важную роль для характеристики качества статистических оценок играет их дисперсия. Ниже, в частности, будет показано разложение дисперсии на соответствующие элементы, позволяющие оценить влияние различных факторов, обуславливающих вариацию признака; использование дисперсии для построения показателей тесноты корреляционной связи при оценке результатов выборочных наблюдений.

  • Ш Среднее квадратическое отклонение равно корню квадратному из дисперсии:
    • § для несгруппированных данных

§ для вариационного ряда

Среднее квадратическое отклонение -- это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

Обозначим: 1 -- наличие интересующего нас признака; 0 -- его отсутствие; р -- доля единиц, обладающих данным признаком; q -- доля единиц, не обладающих данным признаком; p + q =1. Исчислим среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака

вариация средний величина квадратический

так как р + q = 1.

Дисперсия альтернативного признака

Подставив в формулу дисперсии q = 1- р, получим

Таким образом, = pq -- дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком.

Например, если на 10 000 человек населения района приходится 4500 мужчин и 5500 женщин, то

Дисперсия альтернативного признака = pq = 0,45*0,55 = 0,2475.

Предельное значение дисперсии альтернативного признака равно 0,25. Оно получается при р = 0,5.

Среднее квадратическое отклонение альтернативного признака

Если, например, 2% всех деталей бракованные (р = 0,02), то 98% -- годные (q = 0,98), тогда дисперсия доли брака

0,02- 0,98 = 0,0196.

Среднее квадратическое отклонение доли брака составит:

0,14, т.е. = 14%.

При вычислении средних величин и дисперсии для интервальных рядов распределения истинные значения признака заменяются центральными (серединными) значениями интервалов, которые отличаются от средней арифметической значений, включенных в интервал. Это приводит к появлению систематической погрешности при расчете дисперсии. В.Ф.Шеппард установил, что погрешность в расчете дисперсии, вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала (т.е. i2/12) как в сторону занижения, так и в сторону завышения величины дисперсии.

Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по большому количеству исходных данных (n>500). Однако исходя из того, что в ряде случаев обе погрешности, действуя в противоположных направлениях, нейтрализуются и компенсируют друг друга, можно иногда отказаться от введения поправок.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее (количественно) совокупность и тем более типичной будет средняя величина.

В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим используют относительный показатель вариации -- коэффициент вариации.

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33 %.

Покажем расчет различными способами показателей вариации на примере данных о сменной выработке рабочих бригады, представленных интервальным рядом распределения (табл. 5.7).

Исчислим среднесменную выработку, шт.:

Рассчитаем дисперсию выработки по (5.21):

Найдем среднее квадратическое отклонение, шт.:

Определим коэффициент вариации, %:

Таким образом, данная бригада рабочих достаточно однородна по выработке, поскольку вариация признака составляет лишь 8%.

Теперь выполним расчет дисперсии по формуле (5.22) и по способу моментов по формуле (5.23), для расчета воспользуемся данными табл. 5.7, графы 8-11.

Расчет дисперсии по формуле (5.20):


Расчет дисперсии по способу моментов, см. формулу (5.21):

где А = 50 -- центральный вариант с наибольшей частотой;

i = 20 -- величина интервала данного ряда;

Таблица 5.7

Распределение рабочих по сменной выработке изделия А и расчетные значения для исчисления показателей вариации

Группы рабочих по сменной выработке изделий, шт.

Число рабочих

Середина интервала x

Расчетные значения

Как видим, наименее трудоемким является метод исчисления дисперсии способом моментов.