Минералы и ювелиры

Технология пайки низкотемпературными припоями. Специальные методы паяния. Низкотемпературная пайка. Нагрев изделий при высокотемпературной пайке

Паяние соединений при помощи паяльника до настоящего времени остается наиболее распространенным способом пайки при выполнении монтажных соединений, однако производительность этого способа не велика. Более высокопроизводительной является низкотемпературная пайка погружением в расплавленный припой (рис. 5.6).

Низкотемпературная пайка

Паяние низкотемпературной пайкой с погружением в расплавленный припой выполняется на специальных установках, на которых смонтированы ванны с флюсом и расплавленным низкотемпературным (мягким) припоем. Заготовки предварительно очищают и обезжиривают, далее погружают сначала в ванну с флюсом, а затем с расплавленным припоем, после чего вынимают и охлаждают на воздухе до комнатной температуры. Заданную температуру припоя контролируют и поддерживают при помощи специального устройства с термопарой, помещенного в ванну.

Помимо описанного метода паяния, для улучшения качества паяных соединений применяют пайку в среде инертного газа (рис. 5.7), в вакууме (рис. 5.8) и в активной газовой среде (рис. 5.9). Принцип действия установок ясен из рисунков и не требует дополнительных пояснений. Основная особенность этих методов паяния состоит в том, что они выполняются без применения флюсов, так как среда, окружающая заготовки в процессе паяния, препятствует образованию окисных пленок.

Домашние мастера стараются выполнять строительные и ремонтные работы самостоятельно, что позволяет не только сэкономить семейный бюджет, но и быть абсолютно уверенным в качественном результате. Поэтому им приходиться овладевать новыми для себя методиками и технологиями – такими, как пайка медных труб.

Мы расскажем, как производится сборка и соединения коммуникаций из медных труб. У нас вы узнаете, какие расходные материалы и инструменты потребуются исполнителю. Полезные даже в быту навыки дадут возможность самостоятельно собирать трубопроводы с отличными эксплуатационными характеристиками.

Медные трубопроводы на практике используются редко. Причина тому – довольно высокая стоимость материалов. Однако трубопроводы из меди по праву считаются лучшими.

Этот металл превосходит все остальные материалы по термостойкости, гибкости и долговечности. после сборки можно заливать в бетон, прятать в стены и т.д. В процессе эксплуатации с ними ничего не случится.

Трубопроводы из меди считаются лучшими, так как срок их службы сопоставим со сроком эксплуатации здания, в котором они установлены

Это стоит учесть, выбирая материал для обустройства отопления или водопровода. В расчете на длительную эксплуатацию более высокие затраты вполне окупаемы. Помимо отличных эксплуатационных характеристик, которыми обладает медь, она достаточно проста в монтаже. «Страшные сказки» про трудности в пайке чаще всего преувеличены.

Медь достаточно просто паять. Ее поверхность не нуждается в применении агрессивных средств при очистке. Множество легкоплавких металлов имеет с нею высокую адгезию, что упрощает выбор припоя.

Дорогостоящие флюсы меди не нужны, поскольку при плавлении металла не происходит бурных реакций с кислородом. В процессе пайки труба не деформируется, ее форма и размеры остаются неизменными. Получившийся шов при необходимости можно распаять.

Способы паяния деталей из меди

Пайка считается оптимальным методом соединения медных деталей. В процессе работы расплавленный припой заполняет небольшой зазор между элементами, образуя при этом надежное соединение.

Наиболее распространены два способа получения таких соединений. Это высокотемпературная и низкотемпературная капиллярная пайка. Разберем, чем же они отличаются друг от друга.

Галерея изображений

Добавить в закладки

Нагрев при высокотемпературном соединении

Для «твердой» пайки применяют только газ со смесью: ацетилен-воздух или пропан-кислород, допускается газ со смесью ацетилен-кислород.

По возможности цикл нагрева должен быть коротким, при этом пламя горелки необходимо постоянно перемещать по всей длине и окружности соединения. Для быстрого нагрева горящий газ должен иметь небольшое ярко-синего цвета пламя. Соединительные детали пламенем горелки необходимо нагревать до получения темно-вишневого цвета изделий (750°С), при этом теплота должна распределяться равномерно.

При достаточном прогреве деталей припой, который подается к кромке раструба, начинает плавиться и поступать в зазор соединения. Для улучшения пайки соединения припой нужно немного прогреть пламенем горелки. Припой должен плавиться от температуры нагретого соединения, а ни в коем случае не от пламени горелки.

Искусство высокотемпературной пайки заключается в необходимости выполнить такое минимальное нагревание соединения, при котором одно касание прутком припоя приведет к полному заполнению капиллярного зазора с образованием галтели.

После застывания припоя влажной тряпкой необходимо удалить флюс (все видимые его остатки). В сантехнике, после того как монтаж трубопровода закончен, проводится технологическая промывка системы для удаления всех остатков флюса, которые остались на внутренних поверхностях труб. Флюс является агрессивным веществом и оказывает негативное влияние на организм человека.

Теперь вы знаете, как паять медные трубы. Соблюдая простые правила монтажа, которые заключаются в добросовестной очистке поверхности, нагреве соединений до необходимой температуры, неподвижности соединения при остывании припоя, можно гарантированно получить соединения с высокой прочностью.

Надежность и долговечность труб из меди не подвергается сомнению. Однако пайка медных труб своими руками потребует большей сноровки, чем, например, пластиковых. Выбор технологии соединения изделий зависит от назначения трубопровода. Наиболее часто применяются две технологии. Высокотемпературная сварка чаще всего используется, если подразумевается, что нагрузки на систему будут высокими. Для обустройства бытовых трубопроводов отлично подходит низкотемпературная пайка.

Прежде чем приниматься за самостоятельное выполнение работ, следует внимательно изучить технологии, ведь они требуют ответственного и внимательного подхода.

Соединение труб из меди с применением высокотемпературной пайки осуществляется при температурах выше 450 градусов. Необходимость применения столь высоких температур обусловлена использованием металлов с более высокой температурой плавления, чем олово. Основу смеси для высокотемпературного припоя составляют медь, серебро и некоторые другие металлы. Припой, сделанный с использованием тугоплавких материалов, дает так называемый, пьяный шов, который обладает рядом преимуществ по техническим параметрам. Такой шов незаменим в случаях, когда необходимо соединить трубы большого диаметра.

Для сооружения водопроводов высокотемпературный способ используется, когда температура теплоносителя выше 130 градусов, а диаметр изделия больше 28 мм. Благодаря высокой надежности и прочности шва, получающегося в результате высокотемпературного соединения, такой метод широко распространился в газовой промышленности.

Твердая пайка очень часто применяется при устройстве отопительных систем. При производстве сантехнических работ использование этого метода позволяет устроить отвод от уже собранной системы отопления.

Главная особенность высокотемпературной пайки состоит в отжиге металла, после которого он размягчается.

Чтобы избежать потери прочности меди, следует позволить ей остыть естественным путем, а чрезмерного нагрева следует избегать.

Технология низкотемпературной пайки

В бытовом отоплении, водоснабжении, а так же других отраслях, в которых температура относительно не высока, наиболее часто применяется метод низкотемпературной пайки. Такой способ применяется в системах с использованием температуры ниже 450 градусов и для изделий небольшого диаметра.

Такая технология пайки позволяет не отжигать металл, что в свою очередь поспособствовало широкому распространению этого метода при проведении сантехнических работ. Этот метод является наиболее безопасным при осуществлении работ собственными силами.

Основные этапы пайки

Все работы по производству спайки можно разбить на следующие технологические шаги:

  • Резка изделия.
  • Очистка наружной и внутренней поверхностей трубы и раструба.
  • Проверка соединяемых деталей и зазора.
  • Нанесение флюса на поверхность изделия.
  • Сборка.
  • Нагрев.
  • Заполнение монтажного зазора припоем.
  • Охлаждение пайки.
  • Удаление остатков флюса и очистка соединения.

Прежде, чем приниматься за пайку медных труб, нужно соответствующим образом подготовить срезы - зачистить их, устроить технические зазоры, чтобы затем заполнить их смесью припоя. Для сварки труб используется специальное вещество, называемое флюс. Флюс позволяет равномерно распределить припой по всему объему зазора и сделать шов более надежным. Основное правило при использовании этого вещества состоит в том, чтобы избежать попадания влаги на подготовленную поверхность. После выполнения всех правил можно приниматься за работу.

Нагрев изделий при низкотемпературной пайке

Для производства этого типа работ потребуются низкотемпературный флюс, газовая горелка на пропане и газовая смесь: пропан-бутан-воздух. Иногда используется воздушно-пропановая смесь.

Для производства низкотемпературной пайки может использоваться электрический паяльник, который тоже подходит для нагрева элементов соединения. Если для нагрева используется газовая горелка, то нужно иметь в виду, что пятно контакта постоянно должно перемещаться, что позволит добиться равномерного нагрева.

Если с первого касания припой не плавится, нужно продолжить процесс. Но как только припой размягчился, нужно отвести пламя и позволить припою распределиться по техническому зазору.

Нагрев изделий при высокотемпературной пайке

Технология высокотемпературной пайки, благодаря надежности и прочности, также известна как "твердая". Для сварки по такой технологии используется ацетилен-воздушная или пропан-кислородная газовые смеси. Для соблюдения всех требований технологии, пламя должно быть горячим, о чем свидетельствует его ярко-синий цвет.

Пламя горелки следует перемещать по всей длине шва и окружности изделия, это позволит добиться равномерного нагрева. Детали соединения следует нагревать до 750 градусов. Нужную температуру легко определить по темно-вишневому цвету нагреваемых изделий.

Видео

Предлагаем вашему вниманию видеоролик, демонстрирующий процесс пайки медных труб.

Пайка - это процесс получения неразъемного соединения материалов в твердом состоянии при нагреве ниже температуры их плавления путем смачивания, растекания и заполнения зазора между ними расплавленным припоем с последующей кристаллизацией жидкой фазы и образованием спая.

Преимущества пайки как технологического процесса и преимущества паяных соединений обусловлены главным образом возможностью формирования паяного шва ниже температуры плавления соединяемых материалов. Такое формирование шва происходит в результате контактного плавления паяемого металла в жидком припое, внесенном извне (пайка готовым припоем), либо восстановленным из солей флюса (реактивно-флюсовая пайка), либо образовавшемся при контактно-реактивном плавлении паяемых металлов, контактирующих прослоек или паяемых металлов с прослойками (контактно-реактивная пайка). В отличие от автономного плавления (одностадийного процесса, протекающего в объеме при температуре, равной или выше температуры солидус соединяемых материалов), контактное плавление того же материала протекает при контактном равновесии по поверхности контакта с твердым, жидким, газообразным телом, иными по составу. Это многостадийный процесс, протекающий по разным механизмам; жидкая фаза при контактном плавлении твердого тела образуется ниже его температуры солидус.

Пайка обеспечивает получение бездефектных, прочных и работоспособных в условиях длительной эксплуатации, паяных соединений, если учтены физико-химические, конструктивные, технологические и эксплуатационные факторы.

Возможность образования спая между паяемым металлом и припоем характеризуется паяемостью, т.е. способностью паяемого металла вступать в физико-химическое взаимодействие с расплавленным припоем и образовывать паяное соединение. Практически пайкой можно соединить все металлы, металлы с неметаллами и неметаллы между собой. Необходимо только обеспечить такую активацию их поверхности, при которой стало бы возможным установление между атомами соединяемых материалов и припоя прочных химических связей.

Для образования спая необходимым и достаточным является смачивание поверхности основного металла расплавом припоя, что определяется возможностью образования между ними химических связей. Смачивание принципиально возможно в любом сочетании основной металл - припой при обеспечении соответствующих температур, высокой чистоты поверхности или достаточной термической или другого вида активации. Смачивание характеризует принципиальную возможность пайки конкретного основного металла конкретным припоем. При физической возможности образования спая (физической паяемости) уже в какой-то мере гарантирована паяемость с технологической точки зрения при обеспечении соответствующих условий проведения процесса пайки.

Паяемость того или иного материала нельзя рассматривать как способность его подвергаться пайке различными припоями. Можно рассматривать только конкретную пару, и в конкретных условиях пайки. Важным моментом в оценке паяемости, как физической, так и технической, является правильный выбор температуры пайки, которая нередко является решающим фактором не только для обеспечения смачивания припоем поверхности металла, но и дополнительным важным резервом повышения свойств паяных соединений. При оценке паяемости нужно учитывать температурный интервал активности флюсов.

Паяльный флюс - это активное химическое вещество, предназначенное для очистки и защиты поверхности паяемого металла и припоя, в первую очередь, от окисных пленок. Однако флюсы не удаляют посторонние вещества органического и неорганического происхождения (лак, краску). Механизм флюсования флюсами, самофлюсующими припоями, контролируемыми газовыми средами, в вакууме, физико-механическими средствами может выражаться:

1. В химическом взаимодействии между основными компонентами флюса и окисной пленкой, образующиеся при этом соединения растворяются во флюсе, либо выделяются в газообразном состоянии;
2. В химическом взаимодействии между активными компонентами флюса и основным металлом, в результате происходит постепенный отрыв окисной пленки от поверхности металла и переход ее во флюс;
3. В растворении окисной пленки во флюсе;
4. В разрушении окисной пленки продуктами флюсования;
5. В растворении основного металла и припоя в расплаве флюса.

Окисные флюсы взаимодействуют преимущественно с окисной пленкой. Основой флюсования галоидными флюсами является реакция с основным металлом. Для повышения активности оксидных флюсов вводят фториды и фторборы, в результате одновременно с химическим взаимодействием между окислами происходит растворение окисной пленки во фторидах.

К активным газовым средам относятся газообразные флюсы, которые работают самостоятельно или как добавка в нейтральные или восстановительные газовые среды для повышения их активности. При пайке металлов в активных газовых средах удаление окисной пленки с поверхности основного металла и припоя происходит в результате восстановления окислов активными компонентами сред или химического взаимодействия с газообразными флюсами, продуктами которого является летучие вещества или легкоплавкие шлаки, к восстановительным средам относятся водород и газообразные смеси, содержащие водород и окись углерода в качестве восстановителей окислов металлов.

В качестве нейтральных газовых сред используют азот, гелий и аргон, роль газовой среды сводится к защите металлов от окисления. Как газовая среда вакуум защищает металлы от окисления и способствует удалению с их поверхности окисной пленки. При пайке в вакууме, в результате разрежения, парциальное давление кислорода становится ничтожно малым и, следовательно, уменьшается возможность окисления металлов. При высокотемпературной пайке в вакууме создаются условия для диссоциации окислов некоторых металлов.

По условиям заполнения зазора способы пайки разделяются на капиллярные и некапиллярные.

Капиллярная пайка по методу образования спая разделяется на пайку готовым припоем, контактно-реактивную, диффузионную и реактивно-флюсовую. При капиллярной пайке расплавленный припой заполняет зазор между паяемыми деталями и удерживается в нем под действием капиллярных сил. Капиллярная пайка, при которой используется готовый припой и затвердевание шва происходит при охлаждении, называется пайкой готовым припоем. Контактно-реактивной называется капиллярная пайка, при которой припой образуется в результате контактно-реактивного плавления соединяемых материалов, промежуточных покрытий или прокладок с образованием эвтектики или твердого раствора. При контактно-реактивной пайке нет необходимости в предварительном изготовлении припоя. Количество жидкой фазы можно регулировать изменением времени контакта, толщиной покрытия или прослойки, т.к. процесс контактного плавления прекращается после расходования одного из контактирующих материалов.

Диффузионной называется капиллярная пайка, при которой затвердевание шва происходит выше температуры солидус припоя без охлаждения из жидкого состояния. Припой, применяемый при диффузионной пайке, может быть полностью или частично расплавленным, может образовываться при контактно-реактивном плавлении соединяемых металлов с одной или несколькими прослойками других металлов, нанесенных гальваническими способами, напылением или уложенных в зазор между соединяемыми деталями, или в результате контактного твердо-газового плавления. Цель диффузионной пайки - проведение процесса кристаллизации таким образом, чтобы обеспечить наиболее равновесную структуру соединения, повысить температуру распайки соединений.

При реактивно-флюсовой пайке припой образуется в результате восстановления металла из флюса или диссоциации одного из его компонентов. В состав флюсов при реактивно-флюсовой пайке входят легковосстанавливаемые соединения. Образующиеся в результате реакции восстановления металлы в расплавленном состоянии служат элементами припоев, а летучие компоненты реакции создают защитную среду и способствуют отделению окисной пленки от поверхности металла.

Некапиллярная пайка разделяется на пайку-сварку и сварку-пайку. Пайко-сварка относится к процессам исправления дефектов в чугунных, алюминиевых и др. деталях, выравнивания поверхности, устранения вмятин, т.е. заливку расплавленным припоем с использованием технических возможностей низко- и высокотемпературной пайки. Обычно используется для изделий из чугуна и выполняется припоями из латуни с добавлением кремния, марганца, аммония. Сварко-пайка применяется при соединении разнородных металлов за счет расплавления более легкоплавкого металла и смачивания им поверхности более тугоплавкого металла. Необходимая температура подогрева поверхности тугоплавкого металла достигается за счет регулирования величины смещения электрода от оси шва к более тугоплавкому металлу. При подготовке изделий к пайке, при необходимости, на паяемую поверхность наносят металлические покрытия. Технологические покрытия (медь, никель, серебро) наносят на поверхность труднопаяемых металлов, либо металлов, поверхность которых при пайке интенсивно растворяется в припое, что вызывает ухудшение смачивания и капиллярного течения припоя в зазоре, хрупкость в соединениях, по месту нанесения припоя появляется эрозия, подрезы основного металла. Назначение покрытия - предотвращение нежелательного растворения основного металла в припое и улучшение смачивания; в процессе пайки покрытие должно полностью растворяться в расплавленном припое.

При капиллярной пайке используются нахлесточные, стыковые, косостыковые, тавровые, угловые, соприкасающиеся соединения. Нахлесточные соединения наиболее распространены, т.к. изменяя длину нахлестки, можно изменять характеристики прочности изделия. Нахлесточные паяные соединения обладают некоторыми преимуществами перед нахлесточными сварными, передача усилий в которых происходит по периметру элемента. В сварных конструкциях любые швы являются источником концентрации напряжений в переходной зоне от основного металла к шву, и при неблагоприятных очертаниях шва концентрация достигает значительных величин. Сопоставление механических свойств паяных и сварных соединений позволяет сделать следующие выводы:

1. Применение пайки наиболее эффективно в тонкостенных конструкциях, толщиной не более 10 мм;
2. Производительность технологического процесса пайки оказывается часто более высокой;
3. Паяные соединения вызывают, как правило, меньшие остаточные деформации;
4. Паяные конструкции в большинстве случаев имеют меньшую концентрацию напряжений по сравнению со сварными.

Прочность паяных соединений определяется также влиянием дефектов, которые могут образовываться при несоблюдении оптимальных условий и режима пайки. Типичные дефекты, которые снижают прочность паяных соединений - поры, раковины, трещины, флюсовые и шлаковые включения, непропаи.

Все дефекты сплошности в паяных соединениях разделяются на дефекты, связанные с заполнением жидким припоем капиллярных зазоров, и дефекты, возникающие при охлаждении и затвердевании паяных швов. Возникновение первой группы дефектов определяется особенностями движения расплавов припоев в капиллярном зазоре (поры, непропаи). Другая группа дефектов появляется из-за уменьшения растворимости газов в металле при переходе из жидкого состояния в твердое (газо-усадочная пористость). К этой группе относится также пористость кристаллизационного и диффузионного происхождения.

Трещины в паяных швах могут возникнуть под действием напряжений и деформаций металла изделий или шва в процессе охлаждения. Холодные трещины возникают в зоне спаев при образовании прослоек хрупких интерметалидов. Горячие трещины образуются в процессе кристаллизации; если в процессе кристаллизации скорость охлаждения высока и возникающие при этом напряжения велики, а деформационная способность металла шва мала, то возникают кристаллизационные трещины. Полигонизационные трещины в металле шва возникают уже при температурах ниже температуры солидус после затвердевания сплава по так называемым полигонизационным границам, которые образуются при выстраивании дислокации в металле в ряды и образовании сетки дислокации под действием внутренних напряжений. Неметаллические включения типа флюсовых или шлаковых могут возникать в результате недостаточно тщательной подготовки поверхности изделия к пайке или при нарушении режима пайки. При слишком длительном нагреве под пайку флюс реагирует с основным металлом с образованием твердых остатков, которые плохо вытесняются из зазора припоем.