Талисманы и обереги

Схема подключения фена монтажного. Принципиальная схема технического фена. Сломался фен? Ремонт и описание работы. Видео: инфракрасный фен h2d

Всем нам знаком такой вспомогательный инструмент в строительстве как строительный электрический фен, которым мы привыкли пользоваться для снятия лакокрасочных покрытий.

Основополагающий принцип работы строительного фена мало чем отличим от обыкновенного фена, которым мы пользуемся для сушки волос.

Соответственно и электрическая схема строительного фена имеет сходство с электрической схемой обыкновенного фена.

В изложенной теме будет дано пояснение:

  • электрической схеме строительного фена;
  • принципу работы строительного фена;
  • возможным причинам неисправности;
  • устранению данных неисправностей.

Электрическая схема строительного фена

Рассмотрим электрическую схему \рис.1\ строительного фена:

Одна диагональ диодного моста — подключается к внешнему источнику переменного напряжения 220В.

Другая диагональ диодного моста соединена с электродвигателем.

Электрическая схема состоит из следующих элементов:

  • тумблера, осуществляющим режим температуры управления — К1;
  • тумблера, осуществляющим скорость вращения ротора электродвигателя \управление скоростью обдува\ — К2;
  • тумблера отключения ТЭНов — К3;
  • электродвигателя \вентилятора\ — М;
  • конденсатора — С;
  • ТЭНов — R\ТЭН\;
  • диодов — VD1, VD2.

Через диодную мостовую схему \одной диагонали моста\ выпрямленный ток двух потенциалов \+,-\ поступает на электродвигатель. При переходе от анода к катоду — ток протекает при положительном полупериоде синусоидального напряжения.

Два конденсатора соединенных в электрической схеме параллельно, — служат дополнительными сглаживающими фильтрами.

Скорость обдува происходит за счет изменчивости сопротивления в электрической цепи, то есть, при переключении тумблера скорости на наибольшее значение сопротивления, — скорость вращения ротора электродвигателя уменьшается \в связи с падением напряжения\.

Количество ТЭНов \нагревателей\ в данной схеме — четыре. Температурный режим строительного фена осуществляется тумблером температурного управления.

ТЕНы в электрической цепи имеют разное сопротивление, — соответственно, температура нагрева при переключении из одного участка электрической цепи на другой — нагрев ТЭНов будет соответствовать своему значению сопротивления.

Общий внешний вид строительного фена с его названиями отдельных деталей, — показан на рис.2

Следующая электрическая схема строительного фена \рис.3\, — сопоставима с электрической схемой рис.1

В данной электрической схеме отсутствует диодный мост. Управление скоростью обдува и управление температурным режимом, — происходит при переключении из одного участка электрической цепи на другой, а именно:

  • при переключении на участок электрической цепи — состоящей из диода;
  • при переключении на участок электрической цепи — не имеющей диод.

При протекании тока в переходе анод — катод диода VD1, имеющим свое сопротивление, — ТЭН2 будет нагреваться соответственно двум значениям сопротивлений:

  • сопротивления при переходе анод — катод диода VD1;
  • сопротивлении ТЭНа \ТЭН2\.

При протекании тока в переходе анод — катод диода VD2, напряжение подаваемое на электродвигатель и ТЭН1, — будет принимать наименьшее значение.

Соответственно, скорость вращения ротора электродвигателя и температура нагрева ТЭНа для данного участка электрической цепи, — будет соответствовать прямому переходу тока диода VD2. Нагрев ТЭНа \ТЭН1\ для данного участка, так же зависит от своего внутреннего сопротивления, то есть учитывается сопротивление ТЭНа.

Неисправности строительного фена

Основными причинами неисправности строительного фена здесь можно назвать неисправность элементов электроники:

  1. диодов;
  2. конденсаторов.

Чаще всего такая неисправность происходит при резком скачке внешнего источника переменного напряжения. Так например, причина неисправности конденсатора вызвана тем, что обкладки конденсатора замыкаются при скачке напряжения между собой — накоротко.

Конечно же не исключается такая возможность неисправности как разрыв в обмотке статора электродвигателя \перегорание обмотки\.

К незначительным неисправностям можно отнести такие причины как:

  • окисление контактов тумблера температурного управления;
  • окисление контактов тумблера управления скоростью обдува;
  • окисление контактов тумблера отключения ТЭНов;
  • разрыв провода в сетевом кабеле;
  • неисправность штепсельной вилки \отсутствие контакта\.

Диагностика на выявление причины неисправности проводится прибором » Мультиметр».

При замене конденсатора — учитывается его емкость и номинальное значение напряжения.

При замене диода — учитывается сопротивление двух значений, в направлениях:

  • от анода к катоду;
  • от катода к аноду.

Как нам известно, значение сопротивления от анода к катоду будет значительно меньше чем от катода к аноду.

С электродвигателем, при его неисправности, дела обстоят по-сложнее. При подобной неисправности, проще заменить электродвигатель чем допустим выполнить перемотку обмоток статора. Но и такая работа выполнима, — кто непосредственно занимается подобным ремонтом. В этом случае учитывается:

  1. количество витков в обмотке статора;
  2. сечение медного провода.

Не исключается и такая неисправность как перегорание ТЭНа. Замена ТЭНа проводится с учетом своего значения сопротивления.

Диагностика и ремонт-строительного фена

Рассмотрим устройство электродвигателей и как именно нужно проводить диагностику электрических машин, как их принято считать в разделе по электротехнике.

Для наглядного примера, представлены фотоснимки нескольких типов таких электрических машин, — относящихся к коллекторным электродвигателям. Устройство и принцип работы допустим двух коллекторных электродвигателей:

  • пылесоса;
  • строительного фена,

— ничем не отличается. Различие в электродвигателях состоит лишь в скорости вращения ротора и в мощности электродвигателя. Поэтому, мы как бы не будем заострять свое внимание в том плане, что приведены разъяснения, не относящиеся к электродвигателю строительного фена.

Электродвигатель строительного фена

Электродвигатель строительного фена — асинхронный, коллекторный, однофазного переменного тока.

асинхронный коллекторный электродвигатель однофазного переменного тока

Электрическая схема коллекторного электродвигателя \рис.5\ выглядит следующим образом:

В схеме мы можем заметить, что коллекторный электродвигатель может работать как от переменного так и от постоянного тока, — таковы законы физики.

Две обмотки статора электродвигателя соединены последовательно. Две графитовые щетки в контакте — в электрическом соединении с коллектором ротора электродвигателя.

Электрическая цепь замыкается на обмотках ротора, — соответственно, обмотки ротора в электрической схеме соединены параллельно через скользящий контакт щетка — коллектор.

диагностика обмоток статора электродвигателя

На фотоснимке показан один из способов диагностирования обмоток статора электродвигателя. Таким способом проверяется целостность либо пробой изоляции обмоток статора. То есть один щуп прибора соединяется с любым из выведенных концов обмоток статора, другой щуп прибора соединяется с сердечником статора.

В том случае, если будет нарушена изоляция обмотки статора и проводка обмотки будет замыкать на сердечник, — прибор укажет на режим короткого замыкания \нулевое значение сопротивления\. Из этого следует, что обмотка статора неисправна.

Прибор на фотоснимке указывает на единичку при диагностировании, — это еще не будет означать, что данная обмотка статора является пригодной к эксплуатации.

Необходимо так же измерить сопротивление непосредственно самих обмоток. Диагностика проводится таким же подобным способом, — щупы прибора при этом соединяются с выведенными концами проводов обмоток статора. При целостности обмоток, дисплей прибора укажет на значение сопротивления, которым обладает та или другая обмотка. При разрыве той или иной обмотки статора, — прибор покажет «единицу». Если провода обмотки статора между собой будут замкнуты накоротко в результате перегрева электродвигателя или по другим иным причинам, — прибор будет указывать на наименьшее \нулевое\ значение сопротивления или же «режим короткого замыкания».

Как проверить прибором обмотки ротора на сопротивление? — Для этого нужно два щупа прибора соединить с двумя противоположными сторонами коллектора, то есть нужно выполнить такое же соединение, которые имеют графитовые щетки в электрическом соединении с коллектором. Результаты диагностики сводятся к таким же показаниям, что и при диагностировании обмоток статора.

износ пластин коллектора

Что из себя вообще представляет коллектор? — Коллектор, это полый цилиндр состоящий из мелких медных пластин специального сплава, изолированных как друг от друга так и от вала ротора.

В том случае, если повреждение пластин коллектора незначительное, — пластины коллектора зачищаются мелкозернистой наждачной бумагой. Опять же, данный объем работы выполним непосредственно только специалистами, занимающими ремонтом электродвигателей.

Электрическая схема \рис.7\ состоит из батареи и лампочки, данная схема сопоставима со схемой карманного фонарика. Один конец провода с отрицательным потенциалом соединяется с сердечником статора, другой конец провода с положительным потенциалом соединяется с одним из выведенных концов обмоток статора. Если провода соединить наоборот, то есть «плюс» к сердечнику статора, «минус» к выведенному концу обмотки статора, — от этого ничего не меняется.

При наличии пробоя изоляции, когда обмотка статора замкнута с сердечником, — лампочка в данной электрической схеме будет гореть. Соответственно, если лампочка гореть не будет — значит обмотка статора не замкнута с сердечником статора.

Такой способ диагностирования \рис.7\ — не полный. Точная диагностика проводится только прибором Омметр либо прибором Мультиметр с установленным диапазоном измерения сопротивления, для последующего замера сопротивления обмоток статора.

Фен строительный (технический) - ручной электроинструмент для направленной подачи нагретого воздуха с целью бесконтактного (опосредованного) нагрева обрабатываемого материала. Область применения инструмента очень обширная: от простой сушки воздухом комнатной температуры, до мощного воздействия температурами свыше пятисот градусов по Цельсию. Спрос на строительные фены подпитывает их невысокая цена (на модели начального уровня), вследствие простоты конструкции и, во многом, отработанных временем схемотехнических решений.

Интерскол ФЭ-2000 является представителем бытовых строительных фенов с минимально необходимым набором функций: плавная регулировка температуры, два режима интенсивности обдува. Этого набора, как правило, вполне достаточно для выполнения подавляющего большинства задач. Конкретный экземпляр данного фена (первая модификация, плата DB3011) был приобретен около трех лет назад, имел весьма немалую (но не запредельную) ежедневную эксплуатационную нагрузку. По этой причине, все несовершенства конструкции фена проявились быстро.

Через несколько месяцев после начала эксплуатации произошла первая поломка: нет регулировки температуры, исходящий воздух всегда холодный. Причина поломки - перегрев симистора BTA16, выход его из строя по причинам недостаточного прижима к радиатору и неприменения теплопроводной пасты. Ремонт заключался в замене симистора с предварительным нанесением пасты КПТ-8. Данная поломка больше не повторялась.


Фен Интерскол ФЭ-2000. Чемодан в комплекте.


Сопло. Виден керамический нагреватель со спиралью внутри.

В конце первого года эксплуатации фена, произошел перелом (внутренний разрыв проводов) кабеля питания рядом с корпусом инструмента. Данная неисправность часто встречается среди инструмента непрофессионального уровня. Родной кабель питания высоким качеством не отличается, имеет изоляцию средней жесткости, четвертый-пятый класс гибкости медных токонесущих жил. Установка нового кабеля КГ 2x1,5 (в резиновой, двойной изоляции) позволила забыть о данном типе неисправности.

На втором году эксплуатации оборвалась высокоомная обмотка нагревателя, служащая балластом питания электродвигателя. Причину обрыва установить трудно, ею может быть как заводской брак (что наиболее вероятно), так и самопроизвольное перетирание нихромовой проволоки о твердые края керамики, вследствие множества циклов нагрева-охлаждения. Обмотка разорвалась - двигатель остановился. В результате останова двигателя с последующим перегревом основной (высокотемпературной) обмотки нагревательного элемента, сработал термопредохранитель (высокотемпературная обмотка осталась цела). Корпус фена был разобран, разобран нагревательный элемент, локализовано место разрыва нихромовой проволоки. Место разрыва оказалось неподалеку от одного из концов обмотки, по этой причине было принято решение не соединять концы проволоки, а смотать (убрать) короткий отрезок. Было уменьшено сопротивление балластной обмотки, по примерным расчетам, на 8-12%, что не критично для двигателя. К этому времени, уже изредка начали появляться посторонние шумы подшипников двигателя и его время, к сожалению, явно подходило к концу. Штатный термопредохранитель имел номинальную температуру срабатывания 125°C , он был заменен новым с более высокой температурой 150°C. Небольшой температурный запас объясняется предположением о том, что дополнительные 25°C вряд ли позволят сгореть обмотке нагревательного элемента (в случае аварийной ситуации), зато дадут больше времени на оперативное отключение фена до срабатывания (обрыва) термопредохранителя. Чтобы заменить термопредохранитель, нужно почти полностью разобрать нагревательный элемент. Около половины всех керамических колец, из которых набирается сердечник нагревательного элемента, со временем растрескалось (видимо, по причине низкого качества керамики) и, при снятии внешней оболочки из слюды, кольца распадаются на небольшие частички. Термопредохранитель соединяется с обмоткой нагревательного элемента и с проводом питания при помощи миниатюрных опрессовочных гильз, заново качественно опрессовать которые (без специального инструмента) очень проблематично. Для удобства возможной замены термопредохранителя в будущем, он был установлен с применением плоских разъемов (автомобильных клемм).

К концу второго года эксплуатации, начали сильно «звенеть» подшипники скольжения в двигателе. Также, произвольным образом, стало пропадать и появляться вновь напряжение на высокотемпературной спирали нагревательного элемента при вращении ручки регулятора. Эти неисправности быстро усугубились, дальнейшее нормальное использование фена по прямому назначению не представлялось возможным: двигатель гудел, обороты его упали, выставить нужную температуру нагрева было практически невозможно. Назрела острая необходимость в глубоком восстановлении работоспособности фена.





Корпус фена вскрыт (фот сверху). Крепежные шурупы корпуса (фото снизу).


Внутренности фена Интерскол ФЭ-2000.
Слева направо: плата, двигатель с крыльчаткой, переключатель режимов работы, нагреватель.



Плата DB3011.




Нагревательный элемент фена Интерскол ФЭ-2000.

Замена электродвигателя.

Отыскать нужный двигатель в продаже, есть задача не простая. Поэтому, когда подходящий по габаритам двигатель был обнаружен, было принято решение приобрести двигатель независимо от других его характеристик (обороты, напряжение). В итоге оказалось, что купленный двигатель имел в несколько раз меньше напряжение питания (12 В) и, примерно, в полтора-два раза меньше оборотов, чем штатный двигатель фена. Эти задачи предстояло решить, но вначале нужно снять старый и установить новый двигатель в корпус фена. Процесс замены двигателя не очень сложный. Наибольшую трудность представляет демонтаж пластиковой крыльчатки с вала двигателя. С помощью подручных средств организовываем клиновидный упор снизу ступицы и, с помощью сверла диаметром 2 мм, понемногу выколачиваем вал двигателя. По мере выхода вала, положение упора (клина) нужно корректировать. Будьте крайне внимательными, не повредите пластиковую ступицу крыльчатки! Перед тем, как одеть снятую крыльчатку на вал нового двигателя, необходимо закрепить двигатель двумя винтами и обезжирить поверхность вала с помощь ацетона. Не будет лишним очистить и обезжирить внутреннюю поверхность ступицы крыльчатки бензином или спиртом. Насаживаем крыльчатку на вал нового двигателя вручную (можно слегка подколотить миниатюрной резиновой киянкой), уперев другой конец вала (находящийся вблизи щеточно-коллекторного узла) во что-либо твердое.


Двигатель с крыльчаткой.


Крыльчатка из пластмассы крупным планом.


Снимаем крыльчатку с двигателя.
Используем пинцет в качестве упора. По сверлу, которое упирается в вал двигателя, наносим легкие удары небольшим молоточком.




Конденсаторы на новый двигатель не устанавливались.



Измерение родного двигателя.


Термопредохранитель (фото слева). Разъем плоский типа РпИм+РпИп (фото справа).

Блок питания двигателя.

Решить проблему питания электродвигателя можно двумя способами: увеличить длину (число витков) балластной обмотки или подать на двигатель питание от какого-либо другого источника. Первый способ осложняется необходимостью поиска нужной нихромовой проволоки и места для размещения дополнительных витков в нагревательном элементе (который буквально рассыпается в руках). Пойдем по второму пути - изготовим отдельный источник питания. Очень подходящим по размеру и по току нагрузки оказалось зарядное устройство от сотового телефона. Плата зарядника помещается рядом со штатной платой фена, необходимо обеспечить должные уровни изоляции (предотвратить нежелательные касания плат) и крепления (фиксации). Но есть одна загвоздка - выходное напряжение. Как известно, у зарядного устройства оно составляет около 5 В, а нам нужно 12. Следовательно, будем увеличивать число витков во вторичной обмотке выходного трансформатора блока питания (зарядного устройства). Выпаиваем трансформатор, разбираем магнитопровод, осторожно разъединяя ферритовый сердечник на две половины (упростить задачу смогут прогрев трансформатора до 100°С и применение ацетона). В крайнем случае, если разобрать магнитопровод не удается, можно мотать по челночному принципу, дабы число витков невелико. Главное - не расколоть феррит!

Находим финишный конец вторичной обмотки и начинаем не спеша сматывать виток за витком, считая их количество и запоминая направление намотки провода. Когда вторичная обмотка смотана, необходимо произвести элементарные расчеты по определению числа витков для напряжения питания двигателя (в нашем случае - 12 В): находим число витков, приходящееся на 1 В (зная бывшее выходное напряжение зарядного устройства), умножаем на него целевое значения напряжения питания. Не будет лишним добавить пару витков прозапас (при необходимости, их можно быстро смотать).

Мы увеличили выходное напряжение в 2,4 раза, максимальный ток нагрузки закономерно уменьшается на это же значение. Как известно, ток обмотки трансформатора зависит от площади поперечного сечения проводника. Чтобы определить минимально допустимое сечение провода для новой вторичной обмотки, измеряем диаметр (и вычисляем площадь сечения) смотанного провода, делим полученное значение на 2 (грубое приближение, углубляться в дебри расчетов не будем). Если ширина зазора для укладки провода позволяет, то вовсе не обязательно выбирать провод более тонкий, главное - уместить требуемое количество витков и свободно одеть магнитопровод. Наматываем провод виток к витку, соблюдая направление намотки и считая количество витков. По завершению, подпаиваем концы провода к выводам трансформатора, не забыв удалить изоляционную эмаль в местах пайки. Покрываем сопрягаемые торцы каждой из двух половин магнитопровода цапонлаком, собираем трансформатор, прижав половинки феррита друг к другу на время пока лак не подсохнет. Плотно наматываем сверху на магнитопровод два-три слоя тонкой полосы из изоляционной ленты или бумажного скотча, покрываем её сверху цапонлаком, сушим. Впаиваем трансформатор в плату блок питания, подключаем двигатель, измеряем напряжение. Если оно слишком велико, сматываем витки. Когда напряжение правильное, закрепляем вторичную обмотку - наносим на нее тонкий слой цапонлака. Трансформатор готов. Нужно заметить, что в результате этой переделки, мы получили всего одну скорость вращения двигателя, а именно некое среднее её значение по отношению к двум изначальным (паспортным) скоростям.


Плата зарядного устройства сотового телефона до переделки.


Разбираем трансформатор.
Вторичная обмотка трансформатора имела 12 витков провода D=0,35 мм в один слой.


Фото слева: катушка с эмальпроводом ПЭТВ D=0,32 мм, которым будет намотан трансформатор.
Фото справа: намотанная катушка трансформатора (29 витков ПЭТВ D=0,32 мм в два слоя).



Круговая обмотка изоляционной лентой (фото справа).



Перемотанный трансформатор установлен на плату блока питания (фото слева).
Плата блока питания двигателя готова к установке в фен (фото справа).


Штатные диоды (D1-D5) питания двигателя демонтированы для получения дополнительного свободного места (фото слева).
Плата блока питания двигателя на своем месте (фото справа).

Замена переменного резистора.

Чтобы убедиться в неисправности оного, вместо высокотемпературной обмотки нагревателя подключим лампу накаливания (см. аналогичный пример в статье - ). Подаем на плату питание и видим, что лампа неадекватно реагирует на вращение переменного резистора. Выпаиваем штатный переменный резистор, временно подключаем любой другой (заведомо исправный) с тем же сопротивлением 100 К. Видим правильную работу схемы: скважность вспышек лампы четко привязана к углу поворота ручки (движка) переменного резистора, причем в одном крайнем положении движка свечение лампы отсутствует, в другом - наблюдается полный накал. Неисправность локализована, меняем переменный резистор новым (исправным). В нашем случае был установлен двигатель с меньшими оборотами, и интенсивность обдува спирали уменьшилась. Необходимо ограничить максимальную температуру нагрева спирали, во избежание ее перегрева и/или срабатывания термопредохранителя. Для этого, последовательно с переменным резистором (в разрыв бокового вывода, соответствующего максимальной мощности) впаиваем постоянный резистор, сопротивление которого определяется экспериментальным путем, визуально наблюдая за цветом накала спирали.



На левом фото изображены старый (слева) и новый (справа) переменные резисторы.
На правом фото показан новый переменный резистор сдвоенного типа (2 x 100 K). Вскрытие корпуса - самый быстрый способ определить назначения выводов.


Придать нужную форму ручке резистора помогут надфили (фото слева).
Новый переменный резистор установлен (фото справа). Внутри красной термоусаживаемой трубки находится добавочный резистор сопротивлением 130 K.


Степень накала спирали в положении ручки регулятора, соответствующее максимальной температуре воздуха.


Измерение минимальной и максимальной температуры воздуха.

Выводы.

Технические решения, примененные в конструкции строительного фена Интерскол ФЭ-2000 первой модификации не уникальны и не отличаются высокой надежностью. Фен справедливо не позиционируется производителем как инструмент для профессионального использования. Инструмент вполне подходит для применения в быту. При наличии некоторого начального уровня подготовки пользователя, не составит большого труда самостоятельно восстановить работоспособность фена, так как его ремонтопригодность хорошая. Будущим обладателям модели ФЭ-2000, и тем, кто планирует использовать фен интенсивно, можно порекомендовать сразу после покупки проверить качество теплового контакта симистора с радиатором и, при необходимости, нанести теплопроводную пасту. Также не будет лишним сразу заменить провод питания на более качественный.

Ремонт любого фена начинается, с его полной или частичной разборки, но прежде чем приступим к этому процессу, давай те найдем ответ на выше заданный вопрос.

Абсолютно любой фен можно разделить на два основных элемента - нагревательный элемент и электродвигатель. Нагревательным элементом служит обычно нихромовая спираль, именно она нагревает воздух. А электродвигатели постоянного тока, создает теплый направленный воздушный поток.


Электродвигатели в фенах бывают 12, 24 и 36 Вольтовые, но иногда в очень дешевых китайских моделях встречаются электродвигатели на 220 Вольт. К ротору двигателя крепится пропеллер, который обеспечивает отвод теплого воздуха со спирали. Мощность фена варьируется от толщины спирали и мощности электродвигателя.

Рассмотрим конструкцию фена более подробно:

1 - насадка-диффузор, 2 - корпус, 3 - воздуховод, 4 - ручка, 5 - предохранитель от перекручивания шнура, 6 - кнопка режима "Холодный воздух", 7 - переключатель температуры потока воздуха, 8 - переключатель скорости потока воздуха, 9 - кнопка режима "Турбо" - максимальный поток воздуха, 10 - петля для подвешивания фена.

Корпус фена состоит из двух пластмассовых половинок, переднего и заднего кольца и сетки. Сеточная полусфера демонтируется легким поворотом против часовой стрелки. Сложней всего вытащить заднее кольцо там где сетевой провод входит в основание. У этого кольца есть ушки с отверстиями и с фиксаторами. Переднее кольцо снимается, хоть и немного легче но также имеет два фиксатора на половинках корпуса и углубления в кольце (на фото ниже хорошо виден только один выступ и кольцо одето до него).

основные элементы фена и схема на фотографиях ниже:


Фен Rowenta cv8525 работает, но не греет воздух

Фен Rowenta ремонт и разборка : Сначала снимается переднее металлическое кольцо, затем задняя сетка под ней скрываются два самореза, отвинчиваем их и снимаем заднюю накладку с ручки (на защелках). Под накладкой располагаются пять саморезов отвинчиваем их.

Осмотр выявил классическое нарушение контакта в кнопке отключающей нагрев воздуха. Контакт немного отошел и перестал замыкать цепь нагрева спирали. Ремонт свелся к правильной установки положения контакта и приплавлении верха пластиковой стойки обычным паяльником

Разборка и ремонт фена Remington

Нестабильность работы. Периодически фен выключался. Сначала требуется вытащить заглушки на ручке фена. Удалить заглушки можно швейной иголкой или острым концом тонкого ножа.

Под заглушками расположены винты под специальную U-образную отвертку. После разборки ручки, видим – выключатель подачи теплого воздуха (синий), переключатель мощности фена (красный). Тут надо все очень внимательно осмотеть на случай вполне вероятного обрыва проводников или оплавления на переключателях.


Во время ремонта и монтажа различных конструкций строительный фен используется для разогрева застарелых лакокрасочных покрытий, которые по-другому будет сложно удалить с поверхности. Также его применяют на строительстве при пайке металла и во время работы с пластиковыми трубами, которым при нагревании можно придать нужную форму изгиба. Однако стоит учитывать, что строительный фен – сложное устройство и при неправильной эксплуатации оно может получить серьезные повреждения, устранение которых потребует траты времени и сил.

Самостоятельное выполнение ремонта оборудования может стать необходимостью в случае, если срок гарантии уже истек, или у вас нет возможности останавливать работы на тот период, пока устройство будет находиться в сервисном центре. В такой ситуации вам необходимо знать, как диагностировать поломку и проводить ремонт.

Основными элементами любого подобного устройства являются:

  • нагревательный элемент;
  • небольшой двигатель;
  • вентилятор.

Воздух нагнетается вентилятором и проходит через нагревательный элемент, приобретая нужную температуру, и выходит через сопло. Такое устройство отличается от фена, которым мы сушим волосы, только мощностью, в остальном они работают по схожему принципу. Для расчета производительности используется показатель пропускной способности: сколько литров воздуха может проходить через оборудование в минуту.

Дополнительный функционал обеспечивает удобство в работе и в тоже время усложняет его устройство. В числе таких функций может быть:

  • световой индикатор уровня нагрева;
  • возможность регулировки температуры;
  • возможность регулировки силы воздушного потока;
  • сменные насадки для работы с различными материалами.

Если вы имеете дело с моделью, функционал которой значительно расширен, то имеет смысл обратиться к специалистам по ремонту. Поскольку диагностика и замена деталей в этом случае может потребовать специальных знаний.

Диагностика поломки

Как правило, строительный фен выходит из строя по причине не соблюдения требований эксплуатации. При перекручивании шнура может произойти его залом, а слишком долгая работа может привести к перегреву оборудования.

Специалисты называют следующие поломки оборудования, которые случаются чаще всего:

  • поломка шнура питания в месте перегиба;
  • дефект кнопки пуска и других элементов управления;
  • перегорание внутренних проводов;
  • нарушение целостности нагревательного элемента;
  • перегорание или перегрев двигателя и вентилятора.

Самыми сложными поломками считаются как раз неисправность двигателя и вентилятора – их, скорее всего, придется заменить. При этом найти необходимые детали бывает довольно сложно.

Как обнаружить неисправность?

Строительный фен не включается или работает не в полную мощность? Значит, в первую очередь, необходимо осмотреть оборудование. Проверяем целостность провода питания, вилки, функционирование кнопок включения и регулировки температуры.

  • Если при включении устройство выдает холодный воздух из сопла, неисправность касается спирали.
  • Если же воздух совсем не подается, возможно, произошла поломка вентилятора или двигателя.

Чтобы уточнить причину поломки может появиться необходимость выполнить разбор электроприбора. Тогда вам понадобится фотоаппарат: кадры поэтапного разбора конструкции помогут потом правильно собрать устройство.

Ремонт строительного фена своими руками

Приступать к починке оборудования можно сразу, как только будет проведена диагностика. Для этих целей вам может понадобиться отвертка и паяльник, а также детали, которые подлежат замене.

  • Замена спирали (ТЭНа) обычно не вызывает особых сложностей. В этом случае стоит учитывать значение сопротивления.
  • Проводники, которые отсоединились, можно закрепить в нужное место с помощью паяльника.
  • Если необходимо произвести замену конденсатора, то подбирать нужную деталь стоит по емкости и номинальному значению напряжения.
  • Неисправность электродвигателя в основном решается его заменой, однако выполнить ее не так просто.

Для замены внешнего провода вам также понадобится разобрать корпус устройства и отсоединить сначала поврежденный провод. Во время работы старайтесь все детали складывать в одну емкость, чтобы ничего не потерялось. Если у вас есть какие-либо сомнения в собственном умении выполнять ремонт, то восстановление работы своего строительного фена лучше доверить специалистам сервисного центра.

Вы в радиолюбительстве «чайник» или даже пока ещё только «кандидат в чайники», но поддались всеобщему настроению на радиолюбительском форуме и сделали заказ на паяльный фен. Дождались его прибытия и теперь подолгу и с интересом рассматриваете его. Конечно, хотелось бы произвести подключение и попробовать эту штуку в деле. Причём по быстрому и без лишних затрат.

Это вполне возможно. Всё просто. Потребуется блок питания на 24 вольта с регулировкой выходного напряжения, и мультиметр с функцией измерения температуры.

Схема подключения паяльного фена


А это собственно и есть схема подключения всего выше перечисленного. Итак «идём» по схеме снизу в верх. Выходные провода с регулятора мощности соединяются с проводами белого и серого цвета идущими к нагревательной спирали паяльного термофена, выходные провода с регулируемого блока питания на 24 вольта соединяются с проводами идущими к вентилятору паяльного термофена (плюсовой провод питания к коричневому, провод минус питания к синему), жёлтый пока оставляем без внимания, к разъёмам мультиметра для подключения термопары подключаем чёрный и красный провод, которые идут к термопаре находящейся внутри термофена. Зелёный провод также пока игнорируем. Места соединения проводов тщательно изолируем изолентой. В первую очередь это относится к скруткам выходных проводов с регулятора мощности от пылесоса с проводами идущими к нагревательной спирали по которым будет идти опасное для жизни напряжение до 220 вольт.

Но, предварительно стоит вскрыть корпус фена и проконтролировать правильность его внутренней сборки производителем, ибо прецеденты имели место быть. Имеется кое что и здесь. На среднем фото видно, что недостаёт двух саморезов крепления платы соединения проводов. На правом изоляция верхнего и нижнего провода продавлена вследствии небрежной укладки не по месту при сборке, благо жилы целы. Уже не зря вскрывал.

На левом фото - все подключения завершены, мультиметр включённый на пределе измерения температуры показывает комнатную температуру. Положения регуляторов и в блоке питания на 24 вольта и в регуляторе мощности в крайнем левом положении, так сказать «на нуле».

Следующие действия: положение регулятора блока питания ставим в среднее положение и подаём на всю собранную схему сетевое напряжение 220 В. Далее осторожно ручку (обязательно из диэлектрика) потенциометра регулятора мощности нагревательной спирали подаём вправо и одновременно смотрим на показания измерителя температуры. Она начнёт расти. В какой-то момент прекращаем увеличивать мощность нагревательной спирали и начинаем уменьшать скорость воздушного потока - температура при этом продолжает расти.

На правом фото, согласно показаниям мультиметра, температура достигла практически 360 градусов, однако реальная температура воздуха выходящего из сопла фена несколько ниже, в конкретном случае эта разница составляет 70 градусов в меньшую сторону. Данные получены путём практического замера температуры выходящего из сопла фена воздуха штатной термопарой мультиметра.

Испытания станции в деле


Конечно не удержался от соблазна и произвёл практическое снятие с платы б/у многоногой микросхемы. Процесс длился порядка полутора минут, для первого опыта, считаю не плохо. Понравилось, суета и боязнь физического повреждения извлекаемого компонента отсутствуют в корне, микросхема снялась с места установки легко, все ножки полностью целые, внешний вид - как с магазина. Но главное теперь имеется полное практическое представление о том, . Соответственно проверена и исправность полученного устройства. Всё ОК! Автор Babay iz Barnaula.

Обсудить статью СХЕМА ПОДКЛЮЧЕНИЯ ТЕРМОВОЗДУШНОГО ПАЯЛЬНОГО ФЕНА