По имени

Как вычислить расход воды. Как рассчитать расход воды по диаметру трубы – теория и практика. Расчет пропускной способности водопровода

Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, в которых осуществляются рабочие процессы, относящиеся к различным областям применения. При выборе труб и конфигурации трубопровода большое значение имеет стоимость как самих труб, так и трубопроводной арматуры. Конечная стоимость перекачки среды по трубопроводу во многом определяется размерами труб (диаметр и длина). Расчет этих величин осуществляется с помощью специально разработанных формул, специфичных для определенных видов эксплуатации.

Труба - это полый цилиндр из металла, дерева или другого материала, применяемый для транспортировки жидких, газообразных и сыпучих сред. В качестве перемещаемой среды может выступать вода, природный газ, пар, нефтепродукты и т.д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая бытовым применением.

Для изготовления труб могут использоваться самые разные материалы, такие как сталь, чугун, медь, цемент, пластик, такой как АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутелен, полиэтилен и пр.

Основными размерными показателями трубы являются ее диаметр (наружный, внутренний и т.д.) и толщина стенки, которые измеряются в миллиметрах или дюймах. Также используется такая величина как условный диаметр или условный проход - номинальная величина внутреннего диаметра трубы, также измеряемая в миллиметрах (обозначается Ду) или дюймах (обозначается DN). Величины условных диаметров стандартизированы и являются основным критерием при подборе труб и соединительной арматуры.

Соответствие значений условного прохода в мм и дюймах:

Трубе с круглым поперечным сечением отдают предпочтение перед другими геометрическими сечениями по ряду причин:

  • Круг обладает минимальным соотношением периметра к площади, а применимо к трубе это означает, что при равной пропускной способности расход материала у труб круглой формы будет минимальным в сравнении с трубами другой формы. Отсюда же следует и минимально возможные затраты на изоляцию и защитное покрытие;
  • Круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды с гидродинамической точки зрения. Также за счет минимально возможной внутренней площади трубы на единицу ее длины достигается минимизация трения между перемещаемой средой и трубой.
  • Круглая форма наиболее устойчива к воздействию внутренних и внешних давлений;
  • Процесс изготовления труб круглой формы достаточно прост и легкоосуществим.

Трубы могут сильно отличаться по диаметру и конфигурации в зависимости от назначения и области применения. Так магистральные трубопроводы для перемещения воды или нефтепродуктов способны достигать почти полуметра в диаметре при достаточно простой конфигурации, а нагревательные змеевики, также представляющие собой трубу, при малом диаметре имеют сложную форму с множеством поворотов.

Невозможно представить какую-либо отрасль промышленности без сети трубопроводов. Расчет любой такой сети включает подбор материала труб, составление спецификации, где перечислены данные о толщине, размере труб, маршруте и т.д. Сырье, промежуточный продукт и/или готовый продукт проходят производственные стадии, перемещаясь между различными аппаратами и установками, которые соединяются при помощи трубопроводов и фитингов. Правильный расчет, подбор и монтаж системы трубопроводов необходим для надежного осуществления всего процесса, обеспечения безопасной перекачки сред, а также для герметизации системы и недопущения утечек перекачиваемого вещества в атмосферу.

Не существует единой формулы и правил, которые могли бы быть использованы для подбора трубопровода для любого возможного применения и рабочей среды. В каждой отдельной области применения трубопроводов присутствует ряд факторов, требующих учета и способных оказать значительное влияние на предъявляемые к трубопроводу требования. Так, например, при работе со шламом, трубопровод большого размера не только увеличит стоимость установки, но также создаст рабочие трудности.

Обычно трубы подбирают после оптимизации расходов на материал и эксплуатационных расходов. Чем больше диаметр трубопровода, то есть выше изначальное инвестирование, тем ниже будет перепад давления и соответственно меньше эксплуатационные расходы. И наоборот, малые размеры трубопровода позволят уменьшить первичные затраты на сами трубы и трубную арматуру, но возрастание скорости повлечет за собой увеличение потерь, что приведет к необходимости затрачивать дополнительную энергию на перекачку среды. Нормы по скорости, фиксированные для различных областей применения, базируются на оптимальных расчетных условиях. Размер трубопроводов рассчитывают, используя эти нормы с учетом областей применения.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования. Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности. Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды. В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб. Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Основные положения для расчета потока в трубопроводе

Характер течения среды в трубопроводе и при обтекании препятствий способен сильно отличаться от жидкости к жидкости. Одним из важных показателей является вязкость среды, характеризуемая таким параметром как коэффициент вязкости. Ирландский инженер-физик Осборн Рейнольдс провел серию опытов в 1880г, по результатам которых ему удалось вывести безразмерную величину, характеризующую характер потока вязкой жидкости, названную критерием Рейнольдса и обозначаемую Re.

Re = (v·L·ρ)/μ

где:
ρ — плотность жидкости;
v — скорость потока;
L — характерная длина элемента потока;
μ - динамический коэффициент вязкости.

То есть критерий Рейнольдса характеризует отношение сил инерции к силам вязкого трения в потоке жидкости. Изменение значения этого критерия отображает изменение соотношения этих типов сил, что, в свою очередь, влияет на характер потока жидкости. В связи с этим принято выделять три режима потока в зависимости от значения критерия Рейнольдса. При Re<2300 наблюдается так называемый ламинарный поток, при котором жидкость движется тонкими слоями, почти не смешивающимися друг с другом, при этом наблюдается постепенное увеличение скорости потока по направлению от стенок трубы к ее центру. Дальнейшее увеличение числа Рейнольдса приводит к дестабилизации такой структуры потока, и значениям 23004000 наблюдается уже устойчивый режим, характеризуемый беспорядочным изменением скорости и направления потока в каждой отдельной его точке, что в сумме дает выравнивание скоростей потока по всему объему. Такой режим называется турбулентным. Число Рейнольдса зависит от задаваемого насосом напора, вязкости среды при рабочей температуре, а также размерами и формой сечения трубы, через которую проходит поток.

Профиль скоростей в потоке
ламинарный режим переходный режим турбулентный режим
Характер течения
ламинарный режим переходный режим турбулентный режим

Критерий Рейнольдса является критерием подобия для течения вязкой жидкости. То есть с его помощью возможно моделирование реального процесса в уменьшенном размере, удобном для изучения. Это крайне важно, поскольку зачастую бывает крайне сложно, а иногда и вовсе невозможно изучать характер потоков жидкости в реальных аппаратах из-за их большого размера.

Расчет трубопровода. Расчет диаметра трубопровода

Если трубопровод не теплоизолированный, то есть возможен обмен тепла между перемещаемой и окружающей средой, то характер потока в нем может изменяться даже при постоянной скорости (расходе). Такое возможно, если на входе перекачиваемая среда имеет достаточно высокую температуру и течет в турбулентном режиме. По длине трубы температура перемещаемой среды будет падать вследствие тепловых потерь в окружающую среду, что может повлечь за собой смену режима потока на ламинарный или переходный. Температура, при которой происходит смена режима, называется критической температурой. Значение вязкости жидкости напрямую зависит от температуры, поэтому для подобных случаев используют такой параметр как критическая вязкость, соответствующая точке смены режима потока при критическом значении критерия Рейнольдса:

v кр = (v·D)/Re кр = (4·Q)/(π·D·Re кр)

где:
ν кр - критическая кинематическая вязкость;
Re кр - критическое значение критерия Рейнольдса;
D - диаметр трубы;
v - скорость потока;
Q - расход.

Еще одним важным фактором является трение, возникающее между стенками трубы и движущимся потоком. При этом коэффициент трения во многом зависит от шероховатости стенок трубы. Взаимосвязь между коэффициентом трения, критерием Рейнольдса и шероховатостью устанавливается диаграммой Муди, позволяющей определить один из параметров, зная два других.


Формула Коулбрука-Уайта также применяется для вычисления коэффициента трения турбулентного потока. На основании этой формулы возможно построение графиков, по которым устанавливается коэффициент трения.

(√λ ) -1 = -2·log(2,51/(Re·√λ ) + k/(3,71·d))

где:
k - коэффициент шероховатости трубы;
λ - коэффициент трения.

Существуют также и другие формулы приблизительного расчета потерь на трение при напорном течении жидкости в трубах. Одним из наиболее часто используемых уравнений в этом случае считается уравнение Дарси-Вейсбаха. Оно основывается на эмпирических данных и используется в основном при моделировании систем. Потери на трение - это функция скорости жидкости и сопротивления трубы движению жидкости, выражаемой через значение шероховатости стенок трубопровода.

∆H = λ · L/d · v²/(2·g)

где:
ΔH - потери напора;
λ - коэффициент трения;
L - длина участка трубы;
d - диаметр трубы;
v - скорость потока;
g - ускорение свободного падения.

Потеря давления вследствие трения для воды рассчитывают по формуле Хазена — Вильямса.

∆H = 11,23 · L · 1/С 1,85 · Q 1,85 /D 4,87

где:
ΔH - потери напора;
L - длина участка трубы;
С - коэффициент шероховатости Хайзена-Вильямса;
Q - расход;
D - диаметр трубы.

Давление

Рабочее давление трубопровода - это набольшее избыточное давление, обеспечивающее заданный режим работы трубопровода. Решение о размере трубопровода и количестве насосных станций обычно принимается, опираясь на рабочее давление труб, производительность насоса и расходы. Максимальное и минимальное давление трубопровода, а также свойства рабочей среды, определяют расстояние между насосными станциями и требуемую мощность.

Номинальное давление PN - номинальная величина, соответствующая максимальному давлению рабочей среды при 20 °C, при котором возможна продолжительная эксплуатация трубопровода с заданными размерами.

При увеличении температуры нагрузочная способность трубы понижается, как и допустимое избыточное давление вследствие этого. Значение pe,zul показывает максимальное давление (изб) в трубопроводной системе при увеличении рабочей температуры.

График допустимых избыточных давлений:


Расчет падения давления в трубопроводе

Расчет падения давления в трубопроводе производят по формуле:

∆p = λ · L/d · ρ/2 · v²

где:
Δp - перепад давления на участке трубы;
L - длина участка трубы;
λ - коэффициент трения;
d - диаметр трубы;
ρ - плотность перекачиваемой среды;
v - скорость потока.

Транспортируемые рабочие среды

Чаще всего трубы используют для транспортировки воды, но также их могут применять для перемещения шлама, суспензий, пара и т.д. В нефтяной отрасли трубопроводы служат для перекачивания широкого спектра углеводородов и их смесей, сильно отличающихся по химическим и физическим свойствам. Сырая нефть может транспортироваться на больше расстояния от месторождений на суше или нефтяных вышек на шельфе до терминалов, промежуточных точек и НПЗ.

По трубопроводам также передают:

  • продукты нефтепереработки, такие как бензин, авиационное топливо, керосин, дизельное топливо, мазут и др.;
  • нефтехимическое сырье: бензол, стирол, пропилен и т.д.;
  • ароматические углеводороды: ксилол, толуол, кумол и т.д.;
  • сжиженное нефтяное топливо, такое как сжиженный природный газ, сжиженный нефтяной газ, пропан (газы со стандартной температурой и давлением, но подвергнутые сжижению с применением давления);
  • углекислый газ, жидкий аммиак (транспортируются как жидкости под действием давления);
  • битум и вязкое топливо слишком вязкое для транспортировки по трубопроводам, поэтому используются дистиллятные фракции нефти для разжижения этого сырья и получения в результате смеси, которую можно транспортировать посредством трубопровода;
  • водород (на небольшие расстояния).

Качество транспортируемой среды

Физические свойства и параметры транспортируемых сред во многом определяют проектные и рабочие параметры трубопровода. Удельный вес, сжимаемость, температура, вязкость, точка застывания и давление паров - основные параметры рабочей среды, которые необходимо учитывать.

Удельный вес жидкости - это ее вес на единицу объема. Многие газы транспортируются по трубопроводам под повышенным давлением, а при достижении определенного давления некоторые газы даже могут подвергаться сжижению. Поэтому степень сжатия среды является критичным параметром для проектирования трубопроводов и определения пропускной производительности.

Температура косвенно и напрямую оказывает влияние на производительность трубопровода. Это выражается в том, что жидкость увеличивается в объеме после увеличения температуры, при условии, что давление остается постоянным. Понижение температуры может также оказать влияние как на производительность так и на общий КПД системы. Обычно, когда температура жидкости понижается, это сопровождается увеличением ее вязкости, что создает дополнительное сопротивление трения по внутренней стенке трубы, требуя больше энергии для перекачивания одинакового количетсва жидкости. Очень вязкие среды чувствительны к перепадам рабочих температур. Вязкость представляет собой сопротивляемость среды течению и измеряется в сантистоксах сСт. Вязкость определяет не только выбор насоса, но также расстояние между насосными станциями.

Как только температура среды опускается ниже точки потери текучести, эксплуатация трубопровода становится невозможной, и для возобновления его функционирования предпринимаются некоторые опции:

  • нагревание среды или теплоизоляция труб для поддержания рабочей температуры среды выше ее точки текучести;
  • изменение химического состава среды перед попаданием в трубопровод;
  • разбавление перемещаемой среды водой.

Типы магистральных труб

Магистральные трубы изготавливают сварными или бесшовными. Бесшовные стальные трубы изготавливают без продольных сварных швов стальными отрезками с тепловой обработкой для достижения желаемого размера и свойств. Сварная труба изготавливается при использовании нескольких производственных процессов. Эти два типа отличаются друг от друга количеством продольных швов в трубе и типом используемого сварочного оборудования. Стальная сварная труба - наиболее часто используемый тип в нефтехимической области применения.

Каждый отрезок труб соединяют сварными секциями вместе для формирования трубопровода. Также в магистральных трубопроводах в зависимости от области применения используют трубы, изготовленные из стекловолокна, разнообразного пластика, асбоцемента и т.д.

Для соединения прямых участков труб, а также для перехода между отрезками трубопровода разного диаметра используются специально изготовленные соединительные элементы (колена, отводы, затворы).

колено 90° отвод 90° переходное ответвление разветвление
колено 180° отвод 30° переходной штуцер наконечник

Для монтажа отдельных частей трубопроводов и фитингов используются специальные соединения.

сварное фланцевое резьбовое муфтовое

Температурное удлинение трубопровода

Когда трубопровод находится под давлением, вся его внутренняя поверхность подвергается воздействию равномерно распределённой нагрузки, отчего возникают продольные внутренние усилия в трубе и дополнительные нагрузки на концевые опоры. Температурные колебания также оказывают воздействие на трубопровод, вызывая изменения в размерах труб. Усилия в закрепленном трубопроводе при колебаниях температур могут привысить допустимое значение и привести к избыточному напряжению, опасному для прочности трубопровода как в материале труб, так и во фланцевых соединениях. Колебание температуры перекачиваемой среды также создает температурное напряжение в трубопроводе, которое может передаться на арматуру, насосную станцию и пр. Это может повлечь за собой разгерметизацию стыков трубопроводов, выход из строя арматуры или дргуих элементов.

Расчет размеров трубопровода при изменении температуры

Расчет изменения линейных размеров трубопровода при изменении температуры производят по формуле:

∆L = a·L·∆t

a - коэффициент температурного удлинения, мм/(м°C) (см. таблицу ниже);
L - длина трубопровода (расстояние между неподвижными опорами), м;
Δt - разница между макс. и мин. температурой перекачиваемой среды, °С.

Таблица линейного расширения труб из различных материалов

Приведенные числа представляют собой средние показатели для перечисленных материалов и для расчета трубопровода из иных материалов данные из этой таблицы не должны браться за основу. При расчете трубопровода рекомендуется использовать коэффициент линейного удлинения, указываемый заводом-изготовителем трубы в сопровождающей технической спецификации или техпаспорте.

Температурное удлинение трубопроводов устраняют как применением специальных компенсационных участков трубопровода, так и при помощи компенсаторов, которые могут состоять из упругих или подвижных частей.

Компенсационные участки состоят из упругих прямых частей трубопровода, расположенных перпендикулярно друг к другу и крепящихся при помощи отводов. При температурном удлинении увеличение одной части компенсируется деформацией изгиба другой части на плоскости или деформацией изгиба и кручения в пространстве. Если трубопровод сам компенсирует температурное расширение, то это называется самокомпенсацией.

Компенсация происходит также и благодаря эластичным отводам. Часть удлинения компенсируется эластичностью отводов, другую часть устраняют за счет упругих свойств материала участка, находящегося за отводом. Компенсаторы устанавливают там, где не возможно использование компенсирующих участков или когда самокомпенсация трубопровода недостаточна.

По конструктивному исполнению и принципу работы компенсаторы бывают четырех видов: П-образные, линзовые, волнистые, сальниковые. На практике довольно часто применяются плоские компенсаторы с L-, Z- или U-образной формой. В случае пространственных компенсаторов, они представляют собой обычно 2 плоских взаимно перпендикулярных участка и имеют одно общее плечо. Эластичные компенсаторы производят из труб или эластичных дисков, либо сильфонов.

Определение оптимального размера диаметра трубопроводов

Оптимальный диаметр трубопровода может быть найден на основе технико-экономических расчетов. Размеры трубопровода, включая размеры и функциональные возможности различных компонентов, а также условия, при которых должна происходить эксплуатация трубопровода, определяет транспортирующая способность системы. Трубы большего размера подходят для более интенсивного массового потока среды при условии, что другие компоненты в системы подобраны и рассчитаны под эти условия надлежащим образом. Обычно, чем длиннее отрезок магистральной трубы между насосными станциями, тем требуется больший перепад давления в трубопроводе. Кроме того, изменение физических характеристик перекачиваемой среды (вязкость и т.д.), также может оказать большое влияние на давление в магистрали.

Оптимальный размер - наименьший из подходящих размеров трубы для конкретного применения, экономически эффективный на протяжении всего срока службы системы.

Формула для расчета производительности трубы:

Q = (π·d²)/4 · v

Q - расход перекачиваемой жидкости;
d - диаметр трубопровода;
v - скорость потока.

На практике для расчета оптимального диаметра трубопровода используют значения оптимальных скоростей перекачиваемой среды, взятые из справочных материалов, составленных на основе опытных данных:

Перекачиваемая среда Диапазон оптимальных скоростей в трубопроводе, м/с
Жидкости Движение самотеком:
Вязкие жидкости 0,1 - 0,5
Маловязкие жидкости 0,5 - 1
Перекачивание насосом:
Всасывающая сторона 0,8 - 2
Нагнетательная сторона 1,5 - 3
Газы Естественная тяга 2 - 4
Малое давление 4 - 15
Большое давление 15 - 25
Пары Перегретый пар 30 - 50
Насыщенный пар под давлением:
Более 105 Па 15 - 25
(1 - 0,5) · 105 Па 20 - 40
(0,5 - 0,2) · 105 Па 40 - 60
(0,2 - 0,05) · 105 Па 60 - 75

Отсюда получаем формулу для расчета оптимального диаметра трубы:

d о = √((4·Q) / (π·v о ))

Q - заданный расход перекачиваемой жидкости;
d - оптимальный диаметр трубопровода;
v - оптимальная скорость потока.

При высокой скорости потока обычно применяют трубы меньшего диаметра, что означает снижение затрат на закупку трубопровода, его техническое обслуживание и монтажные работы (обозначим K 1). При увеличении скорости происходит возрастание потерь напора на трение и в местных сопротивлениях, что приводит к увеличению затрат на перекачку жидкости (обозначим K 2).

Для трубопроводов больших диаметров затраты K 1 будут выше, а расходы во время эксплуатации K 2 ниже. Если сложить значения K 1 и K 2 , то получим общие минимальные затраты K и оптимальный диаметр трубопровода. Затраты K 1 и K 2 в этом случае приведены в один и тот же временной промежуток.

Расчет (формула) капитальных затрат для трубопровода

K 1 = (m·C M ·K M)/n

m - масса трубопровода, т;
C M - стоимость 1 т, руб/т;
K M - коэффициент, повышающий стоимость монтажных работ, например 1,8;
n - срок службы, лет.

Указанные затраты на эксплуатацию, связанны с потреблением энергии:

K 2 = 24·N·n дн ·C Э руб/год

N - мощность, кВт;
n ДН - кол-во рабочих дней в году;
С Э - затраты на один кВт-ч энергии, руб/кВт *ч.

Формулы для определения размеров трубопровода

Пример общих формул по определению размера труб без учета возможных дополнительных факторов воздействия, таких как эрозия, взвешенные твердые частицы и прочее:

Наименование Уравнение Возможные ограничения
Поток жидкости и газа под давлением
Потеря напора на трение
Дарси-Вейсбаха

d = 12·[(0,0311·f·L·Q 2)/(h f)] 0,2

Q - объемный расход, гал/мин;
d - внутренний диаметр трубы;
hf - потеря напора на трение;
L - длина трубопровода, футы;
f - коэффициент трения;
V - скорость потока.
Уравнение общего потока жидкости

d = 0,64·√(Q/V)

Q - объемный расход, гал/мин
Размер всасывающей линии насоса для ограничения потерь напора на трение

d = √(0,0744·Q)

Q - объемный расход, гал/мин
Уравнение общего потока газа

d = 0,29·√((Q·T)/(P·V))

Q - объемный расход, фут³/мин
T - температура, K
Р - давление фунт/дюйм² (абс);
V - скорость
Поток самотеком
Уравнение Маннинга для расчета диаметра трубы для максимального потока

d = 0,375

Q - объемный расход;
n - коэффициент шероховатости;
S - уклон.
Число Фруда соотношение силы инерции и силы тяжести

Fr = V / √[(d/12) · g]

g - ускорение свободного падения;
v - скорость течения;
L - длину трубы или диаметр.
Пар и испарение
Уравнение определения диаметра трубы для пара

d = 1,75·√[(W·v_g·x) / V]

W - массовый расход;
Vg - удельный объём насыщенного пара;
x - качество пара;
V - скорость.

Оптимальная скорость потока для различных трубопроводных систем

Оптимальный размер трубы выбирается из условия минимальных затрат на перекачивание среды по трубопроводу и стоимости труб. Однако необходимо учитывать также ограничения по скорости. Иногда, размер трубопроводной линии должен соответствовать требованиям технологического процесса. Так же часто размер трубопровода связан с перепадом давления. В предварительных проектных расчетах, где потери давления не учитываются, размер технологического трубопровода определяется по допустимой скорости.

Если в трубопроводе имеются изменения в направлении потока, то это приводит к значительному увеличению местных давлений на поверхности перпендикулярно направлению потока. Такого рода увеличение - функция скорости жидкости, плотности и исходного давления. Так как скорость обратно пропорциональна диаметру, высокоскоростные жидкости требуют особого внимания при выборе размера и конфигурации трубопровода. Оптимальный размер трубы, например, для серной кислоты ограничивает скорость среды до значения, при котором не допускается эрозия стенок в трубных коленах, чтобы таким образом не допустить повреждения структуры трубы.

Поток жидкости самотеком

Расчет размера трубопровода в случае потока, движущегося самотеком, достаточно сложен. Характер движения при такой форме потока в трубе может быть однофазным (полная труба) и двухфазным (частичное заполнение). Двухфазный поток образуется в том случае, когда в трубе одновременно присутствуют жидкость и газ.

В зависимости от соотношения жидкости и газа, а также их скоростей, режим двухфазного потока может варьироваться от пузырькового до дисперсного.

пузырьковый поток (горизонтальный) снарядный поток (горизонтальный) волновой поток дисперсный поток

Движущую силу для жидкости при движении самотеком обеспечивает разность высот начальной и конечной точек, причем обязательным условием является расположение начальной точки выше конечной. Иными словами разность высот определяет разность потенциальной энергии жидкости в этих положениях. Этот параметр также учитывается при подборе трубопровода. Помимо этого на величину движущей силы влияют значения давлений в начальной и конечной точке. Увеличение перепада давления влечет за собой увеличение скорости потока жидкости, что, в свою очередь, позволяет подбирать трубопровод меньшего диаметра, и наоборот.

В случае если конечная точка подсоединена к системе под давлением, например дистилляционной колонне, необходимо вычесть эквивалентное давление из имеющейся разницы в высоте, чтобы оценить реально создаваемое эффективное дифференциальное давление. Также если начальная точка трубопровода будет под вакуумом, то его влияние на общее дифференциальное давление также должно быть учтено при выборе трубопровода. Окончательный подбор труб осуществляется с использованием дифференциального давления, учитывающего все вышеперечисленные факторы, а не основывается только лишь на перепаде высот начальной и конечной точки.

Поток горячей жидкости

В технологических установках обычно сталкиваются с различными проблемами при работе с горячими или кипящими средами. В основном причина заключается в испарении части потока горячей жидкости, то есть фазовом превращении жидкости в пар внутри трубопровода или оборудования. Типичный пример - явление кавитации центробежного насоса, сопровождаемое точечным вскипанием жидкости с последующим образованием пузырьков пара (паровая кавитация) или выделением растворенных газов в пузырьки (газовая кавитация).

Трубопровод большего размера предпочтительнее из-за снижения скорости потока в сравнении с трубопроводом меньшего диаметра при постоянном расходе, что обуславливается достижением более высокого показателя NPSH на всасывающей линии насоса. Также причиной возникновения кавитации при потере давления могут быть точки внезапной смены направления потока или сокращения размера трубопровода. Возникающая парогазовая смесь создает препятствие прохождению потока и может вызвать повреждения трубопровода, что делает явление кавитации крайне нежелательным при эксплуатации трубопровода.

Обводной трубопровод для оборудования/приборов

Оборудование и приборы, особенно те, которые могут создавать значительные перепады давления, то есть теплообменники, регулирующие клапаны и прочее, оснащают обводными трубопроводами (для возможности не прерывать процесс даже во время технических работ по обслуживанию). Такие трубопроводы обычно имеют 2 отсечных клапана, установленных в линию установки, и клапан, регулирующий поток параллельно к этой установке.

При нормальной работе поток жидкости, проходя через основные узлы аппарата, испытывает дополнительное падение давления. В соответствии с этим рассчитывается давление нагнетания для него, создаваемое подсоединенным оборудованием, например центробежным насосом. Насос подбирается на основе общего перепада давления в установке. Во время движения по обводному трубопроводу этот дополнительный перепад давления отсутствует, в то время как работающий насос нагнетает поток прежней силы, согласно своим рабочим характеристикам. Чтобы избежать различия в характеристиках потока через аппарат и обводную линию, рекомендуется использовать обводную линию меньшего размера с регулировочным клапаном, чтобы создать давление, эквивалентное основной установке.

Линия отбора проб

Обычно небольшое количество жидкости отбирается для анализа, чтобы определить ее состав. Отбор может производиться на любой стадии процесса для определения состава сырья, промежуточного продукта, готового продукта или же просто транспортируемого вещества, такого как сточные воды, теплоноситель и т.д. Размер участка трубопровода, на котором происходит отбор проб, обычно зависит от типа анализируемой рабочей среды и расположения точки отбора пробы.

Например, для газов в условиях повышенного давления достаточно небольших трубопроводов с клапанами для отбора нужного количества образцов. Увеличение диаметра линии отбора проб позволит снизить долю отбираемой для анализа среды, но такой отбор становится сложнее контролировать. В то же время небольшая линия отбора проб плохо подходит для анализа различных суспензий, в которых твердые частицы могут забивать проточную часть. Таким образом, размер лини отбора проб для анализа суспензий во многом зависит от размера твердых частиц и характеристик среды. Аналогичные выводы применимы и к вязким жидкостям.

При подборе размера трубопровода для отбора проб обычно учитывают:

  • характеристики жидкости, предназначенной для отбора;
  • потери рабочей среды при отборе;
  • требования безопасности во время отбора;
  • простота эксплуатации;
  • расположение точки отбора.

Циркуляция охлаждающей жидкости

Для трубопроводов с циркулирующей охлаждающей жидкостью предпочтительны высокие скорости. В основном это объясняется тем, что охлаждающая жидкость в охладительной башне подвергается воздействию солнечного света, что создает условия для образования водорослесодержащего слоя. Часть этого водорослесодержащего объема попадает в циркулирующую охлаждающую жидкость. При низкой скорости потока водоросли начинают расти в трубопроводе и через некоторое время создают трудности для циркуляции охлаждающей жидкости или ее прохода в теплообменник. В этом случае рекомендуется высокая скорость циркуляции во избежание образования водорослевых заторов в трубопроводе. Обычно использование интенсивно циркулирующей охлаждающей жидкости встречается в химической промышленности, для чего требуются трубопроводы больших размеров и длины, чтобы обеспечить питание различных теплообменных аппаратов.

Переполнение резервуара

Резервуары оснащают трубами для перелива по следующим причинам:

  • избегание потери жидкости (избыток жидкости поступает в другой резервуар, а не выливается за пределы изначального резервуара);
  • недопущение утечек нежелательных жидкостей за пределы резервуара;
  • поддержание уровня жидкости в резервуарах.

Во всех вышеупомянутых случаях трубы для перелива рассчитаны на максимально допустимый поток жидкости, поступающий в резервуар, независимо от расхода жидкости на выходе. Другие принципы подбора труб аналогичны подбору трубопроводов для самотечных жидкостей, то есть в соответствии с наличием доступной вертикальной высоты между начальной и конечной точкой трубопровода перелива.

Самая высокая точка трубы перелива, которая также является его начальной точкой, находится в месте подсоединения к резервуару (патрубок перелива резервуара) обычно почти на самом верху, а самая низкая конечная точка может быть около сливного желоба почти у самой земли. Однако линия перелива может заканчиваться и на более высокой отметке. В этом случае имеющийся дифференциальный напор будет ниже.

Поток шлама

В случае горной промышленности, руда обычно добывается в труднодоступных участках. В таких местах, как правило, нет железнодорожного или дорожного сообщения. Для таких ситуаций гидравлическая транспортировка сред с твердыми частицами рассматривается как наиболее приемлемая, в том числе и в случае расположения горноперерабатывающих установок на достаточном удалении. Шламовые трубопроводы используются в различных промышленных областях для транспортировки твердых сред в дробленом виде вместе с жидкостью. Такие трубопроводы зарекомендовали себя как наиболее экономически выгодные по сравнению с другими методами транспортировки твердых сред в больших объемах. Помимо этого к их преимуществам можно отнести достаточную безопасность из-за отсутствия нескольких видов транспортировки и экологичность.

Суспензии и смеси взвешенных веществ в жидкостях хранятся в состоянии периодического перемешивания для поддержания однородности. В противном случае происходит процесс расслоения, при котором взвешенные частицы, в зависимости от их физических свойств, всплывают на поверхность жидкости или оседают на дно. Перемешивание обеспечивается благодаря оборудованию, такому как резервуар с мешалкой, в то время как в трубопроводах, это достигается за счет поддержания турбулентных условий движения потока среды.

Снижение скорости потока при транспортировке взвешенных в жидкости частиц не желательно, так как в потоке может начаться процесс разделения фаз. Это может привести к закупориванию трубопровода и изменению концентрации транспортируемого твердого вещества в потоке. Интенсивному перемешиванию в объеме потока способствует турбулентный режим течения.

С другой стороны, чрезмерное уменьшение размеров трубопровода также часто приводит к его закупорке. Поэтому выбор размера трубопровода - это важный и ответственный шаг, требующий предварительного анализа и расчетов. Каждый случай должен рассматриваться индивидуально, поскольку различные шламы ведут себя по-разному на различных скоростях жидкости.

Ремонт трубопроводов

В ходе эксплуатации трубопровода в нем могут возникать различного рода утечки, требующие немедленного устранения для поддержания работоспособности сисетмы. Ремонт магистрального трубопровода может быть осуществлен несколькими способами. Это может быть как замена целого сегмента трубы или небольшого участка, в котором возникла утечка, так и наложение заплатки на существующую трубу. Но прежде чем выбрать какой-либо способ ремонта необходимо провести тщательное изучение причины возникновения утечки. В отдельных случаях может потребоваться не просто ремонт, а смена маршрута трубы для предотвращения повторного ее повреждения.

Первым этапом ремонтных работ является определение местоположения участка трубы, требующего вмешательства. Далее в зависимости от типа трубопровода определяется перечень необходимого оборудования и мероприятий, необходимых для устранения утечки, а также проводится сбор необходимых документов и разрешений, если подлежащий ремонту участок трубы находится на территории другого собственника. Так как большинство труб расположено под землей, может возникнуть необходимость извлечения части трубы. Далее покрытие трубопровода проверяется на общее состояние, после чего часть покрытия удаялется для проведения ремонтных работ непосредсвтенно с трубой. После ремонта могут быть проведены различные проверочные мероприятия: ультразвуковое испытание, цветная дефектоскопия, магнитно-порошковая дефектоскопия и т.п.

Хотя некоторые ремонтные работы требуют полного отключения трубопровода, часто бывает достаточно только временного перерыва в работе для изолирования ремонтируемого участка или подготовки обводного пути. Однако в большенстве случаев ремонтные работы проводят при полном отключении трубопровода. Изолирование участка трубопровода может осуществляться с помощью заглушек или отсечных клапанов. Далее устанавливают необходимое оборудование и осуществляют непосредственно ремонт. Ремонтные работы проводят на поврежденном участке, освобожденном от среды и без давления. По окончании ремонта заглушки открывают и восстанавливают целостность трубопровода.

Предприятия и жилые дома потребляют большое количество воды. Эти цифровые показатели становятся не только свидетельством конкретной величины, указывающей расход.

Помимо этого они помогают определить диаметр трубного сортамента. Многие считают, что расчет расхода воды по диаметру трубы и давлению невозможен, так, как эти понятия совершенно не связаны между собой.

Но, практика показала, что это не так. Пропускные возможности сети водоснабжения зависимы от многих показателей, и первыми в этом перечне будут диаметр трубного сортамента и давление в магистрали.

Выполнять расчет пропускной способности трубы в зависимости от ее диаметра рекомендуют еще на стадии проектирования строительства трубопровода. Полученные данные определяют ключевые параметры не только домашней, но и промышленной магистрали. Обо всем этом и пойдет далее речь.

Расчитаем пропускную способность трубы с помощью онлайн калькулятора

ВНИМАНИЕ! Чтобы правильно посчитать, необходимо обратить внимание, что 1кгс/см2 = 1 атмосфере; 10 метров водяного столба = 1кгс/см2 = 1атм; 5 метров водяного столба = 0.5 кгс/см2 и = 0.5 атм и т.д. Дробные числа в онлайн калькулятор вводятся через точку (Например: 3.5 а не 3,5)

Введите параметры для расчёта:

Какие факторы влияют на проходимость жидкости через трубопровод

Критерии, оказывающие влияние на описываемый показатель, составляют большой список. Вот некоторые из них.

  1. Внутренний диаметр, который имеет трубопровод.
  2. Скорость передвижения потока, которая зависит от давления в магистрали.
  3. Материал, взятый для производства трубного сортамента.

Определение расхода воды на выходе магистрали выполняется по диаметру трубы, ведь эта характеристика совместно с другими влияет на пропускную способность системы. Так же рассчитывая количество расходуемой жидкости, нельзя сбрасывать со счетов толщину стенок, определение которой проводится, исходя из предполагаемого внутреннего напора.

Можно даже заявить, что на определение «трубной геометрии» не влияет только протяженность сети. А сечение, напор и другие факторы играют очень важную роль.

Помимо этого, некоторые параметры системы оказывают на показатель расхода не прямое, а косвенное влияние. Сюда относится вязкость и температура прокачиваемой среды.

Подведя небольшой итог, можно сказать, что определение пропускной способности позволяет точно установить оптимальный тип материала для строительства системы и сделать выбор технологии, применяемой для ее сборки. Иначе сеть не будет функционировать эффективно, и ей потребуются частые аварийные ремонты.

Расчет расхода воды по диаметру круглой трубы, зависит от его размера . Следовательно, что по большему сечению, за определенный промежуток времени будет выполнено движение значительного количества жидкости. Но, выполняя расчет и учитывая диаметр, нельзя сбрасывать со счетов давление.

Если рассмотреть этот расчет на конкретном примере, то получается, что через метровое трубное изделие сквозь отверстие в 1 см пройдет меньше жидкости за определенный временной период, чем через магистраль, достигающей в высоту пару десятков метров. Это закономерно, ведь самый высокий уровень расхода воды на участке достигнет самых больших показателей при максимальном давлении в сети и при самых высоких значениях ее объема.

Смотреть видео

Вычисления сечения по СНИП 2.04.01-85

Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.

Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.

Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:

Внешний объем трубного сортамента (мм)

Примерное количество воды, которое получают в литрах за минуту

Примерное количество воды, исчисляемое в м3 за час

Если ориентироваться на нормы СНИП, то в них можно увидеть следующее – суточный объем потребляемой воды одним человеком не превышает 60 литров. Это при условии, что дом не оборудован водопроводом, а в ситуации с благоустроенным жильем, этот объем возрастает до 200 литров.

Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.

Смотреть видео

Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:

Формула для вычисления по давлению и диаметру трубы: q = π×d²/4 ×V

В формуле: q показывает расход воды. Он исчисляется литрами. d – размер сечению трубы, он показывается в сантиметрах. А V в формуле – это обозначение скорости передвижения потока, она показывается в метрах на секунду.

Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.



Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.

В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.

По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное действие на пропускные возможности сети водоснабжения.

Определение потери напора

Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления . Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.

Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.


А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях является разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.

Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения. Причем, все это при вычисления скорости потока должны проводиться после тщательной подготовки и измерений.

Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам или воспользоваться онлайн калькулятором. Тогда можно рассчитывать на то, что проложенная сеть водопровода или отопления будет работать с максимальной эффективностью.

Видео – как посчитать расход воды

Смотреть видео

Работать с калькулятором просто – вводи данные и получай результат. Но иногда этого недостаточно – точный расчет диаметра трубы возможен только при ручном подсчете с помощью формул и правильно подобранных коэффициентов. Как посчитать диаметр трубы по расходу воды? Как определить размеры газовой магистрали?

Профессиональные инженеры при расчете необходимого диаметра трубы чаще всего используют специальные программы, способные по известным параметрам рассчитать и выдать точный результат. Гораздо труднее строителю-любителю для организации систем водоснабжения, отопления, газификации выполнить расчет самостоятельно. Поэтому чаще всего при возведении или реконструкции частного дома применяют рекомендуемые размеры труб. Но не всегда стандартные советы могут учесть все нюансы индивидуального строительства, поэтому требуется вручную выполнить гидравлический расчет, чтобы правильно подобрать диаметр трубы для отопления, водоснабжения.

Расчет диаметра трубы для водоснабжения и отопления

Основным критерием подбора трубы отопления является ее диаметр. От этого показателя зависит, насколько эффективным будет обогрев дома, срок эксплуатации системы в целом. При малом диаметре в магистралях может возникнуть повышенное давление, которое станет причиной протечек, повышенной нагрузки на трубы и металл, что приведет к проблемам и бесконечным ремонтам. При большом диаметре теплоотдача системы отопления будет стремиться к нулю, а холодная вода будет просто сочиться из крана.

Пропускная способность трубы

Диаметр трубы напрямую влияет на пропускную способность системы, то есть в данном случае имеет значение количество воды или теплоносителя, проходящего через сечение в единицу времени. Чем больше циклов (перемещений) в системе за определенный промежуток времени, тем эффективнее происходит обогрев. Для труб водоснабжения диаметр влияет на исходное давление воды – подходящий размер будет только поддерживать напор, а увеличенный – снижать.

По диаметру подбирают схему водопровода и отопления, количество радиаторов и их секционность, определяют оптимальную длину магистралей.

Так как пропускная способность трубы является основополагающим фактором при выборе, следует определиться, а что, в свою очередь, влияет на проходимость воды в магистрали.

Таблица 1. Пропускная способность трубы в зависимости от расхода воды и диаметра
Расход Пропускная способность
Ду трубы 15 мм 20 мм 25 мм 32 мм 40 мм 50 мм 65 мм 80 мм 100 мм
Па/м - мбар/м меньше 0,15 м/с 0,15 м/с 0,3 м/с
90,0 - 0,900 173 403 745 1627 2488 4716 9612 14940 30240
92,5 - 0,925 176 407 756 1652 2524 4788 9756 15156 30672
95,0 - 0,950 176 414 767 1678 2560 4860 9900 15372 31104
97,5 - 0,975 180 421 778 1699 2596 4932 10044 15552 31500
100,0 - 1,000 184 425 788 1724 2632 5004 10152 15768 31932
120,0 - 1,200 202 472 871 1897 2898 5508 11196 17352 35100
140,0 - 1,400 220 511 943 2059 3143 5976 12132 18792 38160
160,0 - 1,600 234 547 1015 2210 3373 6408 12996 20160 40680
180,0 - 1,800 252 583 1080 2354 3589 6804 13824 21420 43200
200,0 - 2,000 266 619 1151 2486 3780 7200 14580 22644 45720
220,0 - 2,200 281 652 1202 2617 3996 7560 15336 23760 47880
240,0 - 2,400 288 680 1256 2740 4176 7920 16056 24876 50400
260,0 - 2,600 306 713 1310 2855 4356 8244 16740 25920 52200
280,0 - 2,800 317 742 1364 2970 4356 8566 17338 26928 54360
300,0 - 3,000 331 767 1415 3076 4680 8892 18000 27900 56160

Факторы влияния на проходимость магистрали:

  1. Давление воды или теплоносителя.
  2. Внутренний диаметр (сечение) трубы.
  3. Общая длина системы.
  4. Материал трубопровода.
  5. Толщина стенок трубы.

На старой системе проходимость трубы усугубляется известковыми, иловыми отложениями, последствиями коррозии (на металлических изделиях). Все это в совокупности снижает со временем количество воды, проходящей через сечение, то есть подержанные магистрали работают хуже, чем новые.

Примечательно, что этот показатель у полимерных труб не меняется – пластик гораздо менее, чем металл, позволяет шлаку накапливаться на стенках. Поэтому пропускная способность труб ПВХ остается такой же, как и в день их монтажа.


Расчет диаметра трубы по расходу воды

Определяем правильно расход воды

Чтобы определить диаметр трубы по расходу проходящей жидкости, понадобятся значения истинного потребления воды с учетом всех сантехнических приборов: ванны, кухонного смесителя, стиральной машины, унитаза. Рассчитывается каждый отдельный участок водопровода по формуле:

qc = 5× q0 × α, л/с

где qc – значение потребляемой воды каждым прибором;

q0 – нормируемая величина, которая определяется по СНиП. Принимаем для ванны – 0,25, для кухонного смесителя 0,12, для унитаза -0,1;

а – коэффициент, учитывающий возможность одновременной работы сантехнических приборов в помещении. Зависит от значения вероятности и количества потребителей.

На участках магистрали, где совмещаются потоки воды для кухни и ванны, для унитаза и ванны и т.д., в формулу добавляется значение вероятности. То есть возможности одновременной работы кухонного смесителя, крана в ванной, унитаза и других приборов.

Вероятность определяется по формуле:

Р = qhr µ × u/q0 × 3600 × N,

где N – число потребителей воды (приборов);

qhr µ - максимальный часовой расход воды, который можно принять по СНиП. Выбираем для холодной воды qhr µ =5,6 л/с, общий расход 15,6 л/с;

u – количество человек, использующих сантехнику.

Пример расчета расхода воды:

В двухэтажном доме имеется 1 ванная, 1 кухня с установленными стиральной и посудомоечной машиной, душевая кабина, 1 унитаз. В доме живет семья из 5 человек. Алгоритм расчета:

  1. Рассчитываем вероятность Р = 5,6 × 5/0,25 × 3600 × 6=0,00518.
  2. Тогда расход воды для ванной составит qc = 5× 0,25 ×0,00518=0,006475 л/с.
  3. Для кухни qc = 5× 0,12 ×0,00518=0,0031 л/с.
  4. Для туалета qc = 5× 0,1 ×0,00518=0,00259 л/с.

Рассчитываем диаметр трубы

Существует прямая зависимость диаметра от объема перетекающей жидкости, которая выражается формулой:

где Q – расход воды, м3/с;

d – диаметр трубопровода, м;

w – скорость потока, м/с.

Преобразовав формулу, можно выделить значение диаметра трубопровода, который будет соответствовать потребляемому объему воды:

Юлия Петриченко, эксперт

d = √(4Q/πw), м

Скорость потока воды можно принять по таблице 2. Существует более сложный метод расчета скорости потока – с учетом потерь и коэффициента гидравлического трения. Это довольно объемный расчет, но в итоге позволяющий получить точное значение, в отличие от табличного метода.

Таблица 2. Скорость потока жидкости в трубопроводе в зависимости от ее характеристики
Перекачиваемая среда Оптимальная скорость в трубопроводе, м/с
ЖИДКОСТИ Движение самотеком:
Вязкие жидкости 0,1-0,5
Маловязкие жидкости 0,5-1
Перекачиваемые насосом:
Всасывающий трубопровод 0,8-2
Нагнетательный трубопровод 1,5-3
ГАЗЫ Естественная тяга 2-4
Малое давление (вентиляторы) 4-15
Большое давление (компрессор) 15-25
ПАРЫ Перегретые 30-50
Насыщенные пары при давлении
Более 105 Па 15-25
(1-0,5)*105 Па 20-40
(0,5-0,2)*105 Па 40-60
(0,2-0,05)*105 Па 60-75

Пример: Рассчитаем диаметр трубы для ванной, кухни и туалета, исходя из полученных значений расхода воды. Выбираем из таблицы 2 значение скорости потока воды в напорном водопроводе – 3 м/с.

Иногда очень важно точно рассчитать объем воды, проходящей через трубу. К примеру, когда нужно спроектировать новую систему отопления. Отсюда и возникает вопрос: как посчитать объем трубы? Этот показатель помогает правильно выбрать подходящее оборудование например, габарит расширительного бачка. Кроме того, этот показатель очень важен, когда используется антифриз. Обычно он продается в нескольких видах:

  • Разбавленный;
  • Неразбавленный.

Первый вид может выдержать температуру — 65 градусов. Второй замерзнет уже при -30 градусах. Чтобы купить нужное количество антифриза, необходимо знать объем теплоносителя. Другими словами, если объем жидкости равен 70 литрам, значит можно приобрести 35 литров неразбавленной жидкости. Достаточно их развести, соблюдая пропорцию 50–50 и получатся те же 70 литров.

Чтобы получить точные данные, необходимо приготовить:

  • Калькулятор;
  • Штангенциркуль;
  • Линейку.

Сначала измеряется радиус, обозначенный буквой R. Он может быть:

  • Внутренним;
  • Наружным.

Внешний радиус, необходим для определения размера места, которое она займет.

Для расчета необходимо знать данные диаметра трубы. Его обозначают буквой D и рассчитывают по формуле R x 2. Определяется также длина окружности. Обозначается буквой L.

Чтобы вычислить объем трубы, измеряемого кубическими метрами (м3), необходимо предварительно рассчитать ее площадь.

Для получения точного значения, требуется сначала рассчитать площадь сечения.
Для этого применяют формулу:

  • S = R x Пи.
  • Искомая площадь — S;
  • Радиус трубы – R;
  • Число Пи — 3,14159265.

Полученное значение нужно перемножить на длину трубопровода.

Как найти объем трубы по формуле? Нужно знать всего 2 значения. Сама формула расчета, имеет следующий вид:

  • V = S x L
  • Объем трубы – V;
  • Площадь сечения – S;
  • Длина – L

К примеру, у нас есть металлическая труба диаметром 0,5 метра и длиной два метра. Для проведения расчета в формулу расчета площади круга, вставляется размер внешней поперечины нержавеющего металла. Трубная площадь будет равна;

S= (D/2) =3,14 х (0,5/2) = 0,0625 кв. метра.

Итоговая формула расчета, примет следующий вид:

V = HS = 2 х 0,0625=0,125 куб. метра.

По этой формуле рассчитывается объём совершенно любой трубы. Причем абсолютно не важно из какого она материала. Если трубопровод имеет много составных частей, применяя эту формулу, можно рассчитать по отдельности, объем каждого участка.

При выполнении расчета, очень важно чтобы размеры выражались в одинаковых единицах измерения. Проще всего проводить расчет, если все значения перевести в квадратные сантиметры.

Если использовать разные единицы измерения, можно получить весьма сомнительные результаты. Они будут очень далеки от настоящих значений. При выполнении постоянных ежедневных вычислений, можно использовать память калькулятора, установив постоянное значение. К примеру, число Пи, умноженное на два. Это поможет намного быстрее произвести расчет объема трубы разного диаметра.

Сегодня для расчета можно использовать готовые компьютерные программы, в которых, заранее указываются стандартные параметры. Для выполнения расчета, нужно будет только вписывать дополнительные переменные значения.

Скачать программу https://yadi.sk/d/_1ZA9Mmf3AJKXy

Как высчитать площадь поперечного сечения

Если труба круглая, площадь сечения считать надо по формуле площади круга: S = π*R2. Где R - радиус (внутренний), π - 3,14. Итого, надо возвести радиус в квадрат и умножить его на 3,14.
Например, площадь сечения трубы диаметром 90 мм. Находим радиус - 90 мм / 2 = 45 мм. В сантиметрах это 4,5 см. Возводим в квадрат: 4,5 * 4,5 = 2,025 см2, подставляем в формулу S = 2 * 20,25 см2 = 40,5 см2.

Площадь сечения профилированного изделия считается по формуле площади прямоугольника: S = a * b, где a и b - длины сторон прямоугольника. Если считать сечение профиля 40 х 50 мм, получим S = 40 мм * 50 мм = 2000 мм2 или 20 см2 или 0,002 м2.

Расчет объема воды, находящейся во всей системе

Для определения такого параметра, необходимо в формулу подставить значение внутреннего радиуса. Однако сразу появляется проблема. А как рассчитать полный объем воды в трубе всей отопительной системы, в которую входят:

  • Радиаторы;
  • Расширительный бачок;
  • Котел отопления.

Сначала рассчитывается объём радиатора. Для этого открывается его технический паспорт и выписывается значения объема одной секции. Этот параметр умножается на число секций в конкретной батарее. Например, одна равен 1,5 литрам.

Когда установлен биметаллический радиатор, это значение намного меньше. Количество воды в котле можно узнать из паспорта устройства.

Для определения объема расширительного бака, его заполняют измеренным заранее, количеством жидкости.

Очень просто определяется объём труб. Имеющиеся данные для одного метра, определенного диаметра, нужно просто умножить на длину всего трубопровода.

Заметим что в глобальной сети и справочной литературе, можно увидеть специальные таблицы. Они показывают ориентировочные данные изделия. Погрешность приведенных данных достаточно мала, поэтому приведенные в таблице значения, можно смело использовать для вычисления объема воды.

Надо сказать, что при расчете значений, нужно учитывать некоторые характерные отличия. Металлические трубы, имеющие большой диаметр, пропускают количество воды, значительно меньше, чем такие же полипропиленовые трубы.

Причина кроется в гладкости поверхности труб. У стальных изделий она выполнена с большой шероховатостью. ППР трубы не имеют шероховатости на внутренних стенках. Однако при этом стальные изделия имеют больший объем воды, чем в других трубах, одинакового сечения. Поэтому чтобы убедиться, что расчет объема воды в трубах произведен верно, нужно несколько раз перепроверить все данные и подкрепить результат онлайн-калькулятором.

Внутренний объем погонного метра трубы в литрах — таблица

Таблица показывает внутренний объем погонного метра трубы в литрах. То есть сколько потребуется воды, антифриза или другой жидкости (теплоносителя), чтобы заполнить трубопровод. Взят внутренний диаметр труб от 4 до 1000 мм.

Внутренний диаметр,мм Внутренний объем 1 м погонного трубы, литров Внутренний объем 10 м погонных трубы, литров
4 0.0126 0.1257
5 0.0196 0.1963
6 0.0283 0.2827
7 0.0385 0.3848
8 0.0503 0.5027
9 0.0636 0.6362
10 0.0785 0.7854
11 0.095 0.9503
12 0.1131 1.131
13 0.1327 1.3273
14 0.1539 1.5394
15 0.1767 1.7671
16 0.2011 2.0106
17 0.227 2.2698
18 0.2545 2.5447
19 0.2835 2.8353
20 0.3142 3.1416
21 0.3464 3.4636
22 0.3801 3.8013
23 0.4155 4.1548
24 0.4524 4.5239
26 0.5309 5.3093
28 0.6158 6.1575
30 0.7069 7.0686
32 0.8042 8.0425
34 0.9079 9.0792
36 1.0179 10.1788
38 1.1341 11.3411
40 1.2566 12.5664
42 1.3854 13.8544
44 1.5205 15.2053
46 1.6619 16.619
48 1.8096 18.0956
50 1.9635 19.635
52 2.1237 21.2372
54 2.2902 22.9022
56 2.463 24.6301
58 2.6421 26.4208
60 2.8274 28.2743
62 3.0191 30.1907
64 3.217 32.1699
66 3.4212 34.2119
68 3.6317 36.3168
70 3.8485 38.4845
72 4.0715 40.715
74 4.3008 43.0084
76 4.5365 45.3646
78 4.7784 47.7836
80 5.0265 50.2655
82 5.281 52.8102
84 5.5418 55.4177
86 5.8088 58.088
88 6.0821 60.8212
90 6.3617 63.6173
92 6.6476 66.4761
94 6.9398 69.3978
96 7.2382 72.3823
98 7.543 75.4296
100 7.854 78.5398
105 8.659 86.5901
110 9.5033 95.0332
115 10.3869 103.8689
120 11.3097 113.0973
125 12.2718 122.7185
130 13.2732 132.7323
135 14.3139 143.1388
140 15.3938 153.938
145 16.513 165.13
150 17.6715 176.7146
160 20.1062 201.0619
170 22.698 226.9801
180 25.4469 254.469
190 28.3529 283.5287
200 31.4159 314.1593
210 34.6361 346.3606
220 38.0133 380.1327
230 41.5476 415.4756
240 45.2389 452.3893
250 49.0874 490.8739
260 53.0929 530.9292
270 57.2555 572.5553
280 61.5752 615.7522
290 66.052 660.5199
300 70.6858 706.8583
320 80.4248 804.2477
340 90.792 907.9203
360 101.7876 1017.876
380 113.4115 1134.1149
400 125.6637 1256.6371
420 138.5442 1385.4424
440 152.0531 1520.5308
460 166.1903 1661.9025
480 180.9557 1809.5574
500 196.3495 1963.4954
520 212.3717 2123.7166
540 229.0221 2290.221
560 246.3009 2463.0086
580 264.2079 2642.0794
600 282.7433 2827.4334
620 301.9071 3019.0705
640 321.6991 3216.9909
660 342.1194 3421.1944
680 363.1681 3631.6811
700 384.8451 3848.451
720 407.1504 4071.5041
740 430.084 4300.8403
760 453.646 4536.4598
780 477.8362 4778.3624
800 502.6548 5026.5482
820 528.1017 5281.0173
840 554.1769 5541.7694
860 580.8805 5808.8048
880 608.2123 6082.1234
900 636.1725 6361.7251
920 664.761 6647.6101
940 693.9778 6939.7782
960 723.8229 7238.2295
980 754.2964 7542.964
1000 785.3982 7853.9816

Если у вас специфическая конструкция или труба, то в формуле выше показано как вычислить точные данные для правильного расхода воды или иного теплоносителя.

Расчет онлайн

http://mozgan.ru/Geometry/VolumeCylinder

Заключение

Чтобы подобрать точную цифру потребления теплоносителя вашей системы, придется немного посидеть. Либо найдите в интернете, либо воспользуйтесь калькулятором, который советуем мы. Возможно он сможет вам сэкономить время.

Есть у вас система водного типа, то не стоит заморачиваться и осуществлять точный подбор объема. Достаточно прикинуть приблизительно. Точный расчет нужен больше для того, чтобы не купить лишнего и минимизировать расходы. Так как многие останавливаются на выборе дорогостоящего теплоносителя.

Прокладка трубопровода – дело не очень сложное, но достаточно хлопотное. Одной из самых сложных проблем при этом является расчет пропускной способности трубы, которая напрямую влияет на эффективность и работоспособность конструкции. В данной статье речь пойдет о том, как рассчитывается пропускная способность трубы.

Пропускная способность – это один из важнейших показателей любой трубы. Несмотря на это, в маркировке трубы этот показатель указывается редко, да и смысла в этом немного, ведь пропускная способность зависит не только от габаритов изделия, но и от конструкции трубопровода. Именно поэтому данный показатель приходится рассчитывать самостоятельно.

Способы расчета пропускной способности трубопровода

  1. Внешний диаметр . Данный показатель выражается в расстоянии от одной стороны наружной стенки до другой стороны. В расчетах этот параметр имеет обозначение Дн. Внешний диаметр труб всегда отображается в маркировке.
  2. Диаметр условного прохода . Это значение определяется как диаметр внутреннего сечения, который округляется до целых чисел. При расчете величина условного прохода отображается как Ду.


Расчет проходимости трубы может осуществляться по одному из методов, выбирать который необходимо в зависимости от конкретных условий прокладки трубопровода:

  1. Физические расчеты . В данном случае используется формула пропускной способности трубы, позволяющая учесть каждый показатель конструкции. На выборе формулы влияет тип и назначение трубопровода – например, для канализационных систем есть свой набор формул, как и для остальных видов конструкций.
  2. Табличные расчеты . Подобрать оптимальную величину проходимости можно при помощи таблицы с примерными значениями, которая чаще всего используется для обустройства разводки в квартире. Значения, указанные в таблице, довольно размыты, но это не мешает использовать их в расчетах. Единственный недостаток табличного метода заключается в том, что в нем рассчитывается пропускная способность трубы в зависимости от диаметра, но не учитываются изменения последнего вследствие отложений, поэтому для магистралей, подверженных возникновению наростов, такой расчет будет не лучшим выбором. Чтобы получить точные результаты, можно воспользоваться таблицей Шевелева, учитывающей практически все факторы, воздействующие на трубы. Такая таблица отлично подходит для монтажа магистралей на отдельных земельных участках.
  3. Расчет при помощи программ . Многие фирмы, специализирующиеся на прокладке трубопроводов, используют в своей деятельности компьютерные программы, позволяющие точно рассчитать не только пропускную способность труб, но и массу других показателей. Для самостоятельных расчетов можно воспользоваться онлайн-калькуляторами, которые, хоть и имеют несколько большую погрешность, доступны в бесплатном режиме. Хорошим вариантом большой условно-бесплатной программы является «TAScope», а на отечественном пространстве самой популярной является «Гидросистема», которая учитывает еще и нюансы монтажа трубопроводов в зависимости от региона.

Расчет пропускной способности газопроводов

Проектирование газопровода требует достаточно высокой точности – газ имеет очень большой коэффициент сжатия, из-за которого возможны утечки даже через микротрещины, не говоря уже о серьезных разрывах. Именно поэтому правильный расчет пропускной способности трубы, по которой будет транспортироваться газ, очень важен.

Если речь идет о транспортировке газа, то пропускная способность трубопроводов в зависимости от диаметра будет рассчитываться по следующей формуле:

  • Qmax = 0.67 Ду2 * p,

Где р – величина рабочего давления в трубопроводе, к которой прибавляется 0,10 МПа;

Ду – величина условного прохода трубы.

Указанная выше формула расчета пропускной способности трубы по диаметру позволяет создать систему, которая будет работать в бытовых условиях.


В промышленном строительстве и при выполнении профессиональных расчетов применяется формула иного вида:

  • Qmax = 196,386 Ду2 * p/z*T,

Где z – коэффициент сжатия транспортируемой среды;

Т – температура транспортируемого газа (К).

Чтобы избежать проблем, профессионалам приходится учитывать при расчете трубопровода еще и климатические условия в том регионе, где он будет проходить. Если наружный диаметр трубы окажется меньше, чем давление газа в системе, то трубопровод с очень большой вероятностью будет поврежден в процессе эксплуатации, в результате чего произойдет потеря транспортируемого вещества и повысится риск взрыва на ослабленном отрезке трубы.

При большой необходимости можно определить проходимость газовой трубы с помощью таблицы, в которой описана взаимозависимость между наиболее распространенными диаметрами труб и рабочим уровнем давления в них. По большому счету, у таблиц есть тот же недостаток, который имеет рассчитанная по диаметру пропускная способность трубопровода, а именно – невозможность учесть воздействие внешних факторов.

Расчет пропускной способности канализационных труб

При проектировании канализационной системы нужно в обязательном порядке рассчитывать пропускную способность трубопровода, которая напрямую зависит от его вида (канализационные системы бывают напорными и безнапорными). Для осуществления расчетов используются гидравлические законы. Сами расчеты могут проводиться как при помощи формул, так и посредством соответствующих таблиц.

Для гидравлического расчета канализационной системы требуются следующие показатели:

  • Диаметр труб – Ду;
  • Средняя скорость движения веществ – v;
  • Величина гидравлического уклона – I;
  • Степень наполнения – h/Ду.


Как правило, при проведении расчетов вычисляются только два последних параметра – остальные после этого можно будет определить без особых проблем. Величина гидравлического уклона обычно равна уклону земли, который обеспечит движение стоков со скоростью, необходимой для самоочищения системы.

Скорость и предельный уровень наполнения бытовой канализации определяются по таблице, которую можно выписать так:

  1. 150-250 мм - h/Ду составляет 0,6, а скорость – 0,7 м/с.
  2. Диаметр 300-400 мм - h/Ду составляет 0,7, скорость – 0,8 м/с.
  3. Диаметр 450-500 мм - h/Ду составляет 0,75, скорость – 0,9 м/с.
  4. Диаметр 600-800 мм - h/Ду составляет 0,75, скорость – 1 м/с.
  5. Диаметр 900+ мм - h/Ду составляет 0,8, скорость – 1,15 м/с.

Для изделия с небольшим сечением имеются нормативные показатели минимальной величины уклона трубопровода:

  • При диаметре 150 мм уклон не должен быть менее 0,008 мм;
  • При диаметре 200 мм уклон не должен быть менее 0,007 мм.

Для расчета объема стоков используется следующая формула:

  • q = a*v,

Где а – площадь живого сечения потока;

v – скорость транспортировки стоков.


Определить скорость транспортировки вещества можно по такой формуле:

  • v= C√R*i,

где R – величина гидравлического радиуса,

С – коэффициент смачивания;

i – степень уклона конструкции.

Из предыдущей формулы можно вывести следующую, которая позволит определить значение гидравлического уклона:

  • i=v2/C2*R.

Чтобы вычислить коэффициент смачивания, используется формула такого вида:

  • С=(1/n)*R1/6,

Где n – коэффициент, учитывающий степень шероховатости, который варьируется в пределах от 0,012 до 0,015 (зависит от материала изготовления трубы).

Значение R обычно приравнивают к обычному радиусу, но это актуально лишь в том случае, если труба заполняется полностью.

Для других ситуаций используется простая формула:

  • R=A/P,

Где А – площадь сечения потока воды,

Р – длина внутренней части трубы, находящейся в непосредственном контакте с жидкостью.

Табличный расчет канализационных труб

Определять проходимость труб канализационной системы можно и при помощи таблиц, причем расчеты будут напрямую зависеть от типа системы:

  1. Безнапорная канализация . Для расчета безнапорных канализационных систем используются таблицы, содержащие в себе все необходимые показатели. Зная диаметр устанавливаемых труб, можно подобрать в зависимости от него все остальные параметры и подставить их в формулу (прочитайте также: " "). Кроме того, в таблице указан объем проходящей через трубу жидкости, который всегда совпадает с проходимостью трубопровода. При необходимости можно воспользоваться таблицами Лукиных, в которых указана величина пропускной способности всех труб с диаметром в диапазоне от 50 до 2000 мм.
  2. Напорная канализация . Определять пропускную способность в данном типе системы посредством таблиц несколько проще – достаточно знать предельную степень наполнения трубопровода и среднюю скорость транспортировки жидкости. Читайте также: " ".


Таблица пропускной способности полипропиленовых труб позволяет узнать все необходимые для обустройства системы параметры.

Расчет пропускной способности водопровода

Водопроводные трубы в частном строительстве применяются чаще всего. На систему водоснабжения в любом случае приходится серьезная нагрузка, поэтому расчет пропускной способности трубопровода обязателен, ведь он позволяет создать максимально комфортные условия эксплуатации будущей конструкции.

Для определения проходимости водопроводных труб можно использовать их диаметр (прочитайте также: " "). Конечно, данный показатель не является основой для расчета проходимости, но его влияние нельзя исключать. Увеличение внутреннего диаметра трубы прямо пропорционально ее проходимости – то есть, толстая труба почти не препятствует движению воды и меньше подвержена наслоению различных отложений.


Впрочем, есть и другие показатели, которые также необходимо учитывать. Например, очень важным фактором является коэффициент трения жидкости о внутреннюю часть трубы (для разных материалов имеются собственные значения). Также стоит учитывать длину всего трубопровода и разность давлений в начале системы и на выходе. Немаловажным параметром является и количество различных переходников, присутствующих в конструкции водопровода.

Пропускная способность полипропиленовых труб водопровода может рассчитываться в зависимости от нескольких параметров табличным методом. Одним из них является расчет, в котором главным показателем является температура воды. При повышении температуры в системе происходит расширение жидкости, поэтому трение повышается. Для определения проходимости трубопровода нужно воспользоваться соответствующей таблицей. Также есть таблица, позволяющая определить проходимость в трубах в зависимости от давления воды.


Самый точный расчет воды по пропускной способности трубы позволяют осуществить таблицы Шевелевых. Помимо точности и большого числа стандартных значений, в данных таблицах имеются формулы, позволяющие рассчитать любую систему. Данный материал в полном объеме описывает все ситуации, связанные с гидравлическими расчетами, поэтому большинство профессионалов в данной области чаще всего используют именно таблицы Шевелевых.

Основными параметрами, которые учитываются в этих таблицах, являются:

  • Внешний и внутренний диаметры;
  • Толщина стенок трубопровода;
  • Период эксплуатации системы;
  • Общая протяженность магистрали;
  • Функциональное назначение системы.

Заключение

Расчет пропускной способности труб может выполняться разными способами. Выбор оптимального способа расчета зависит от большого количества факторов – от размеров труб до назначения и типа системы. В каждом случае есть более и менее точные варианты расчета, поэтому найти подходящий сможет как профессионал, специализирующийся на прокладке трубопроводов, так и хозяин, решивший самостоятельно проложить магистраль у себя дома.