Все камни

Панельные стены и их конструктивные решения. Стыки стен. Конструктивные решения зданий с каменными стенами Конструктивные решения наружных стен в кирпичных зданиях

Конструктивное решение включает строительную и конструктивную системы, а также конструктивную схему.

Строительная система здания определяется материалом, наиболее массовой конструкцией и технологией возведения несущих элементов (монолитный железобетон).

Конструктивная схема представляет собой схематичный вариант конструктивной системы относительно продольных и поперечных осей.

Несущая КС железобетонного здания состоит из фундамента, опирающихся на него вертикальных несущих элементов (колонн и стен) и объединяющих их в единую пространственную систему горизонтальных элементов (плит перекрытий и покрытия).

В зависимости от типа вертикальных несущих элементов (колонны и стены) конструктивные системы разделяют на:

Колонные (каркасные), где основным несущим вертикальным элементом являются колонны;

Стеновые (бескаркасные), где основным несущим элементом являются стены;

Колонно-стеновые, или смешанные, где вертикальными несущими элементами являются колонны и стены.

а - колонная КС; б - стеновая КС; в - смешанная КС;

1 - плита перекрытия; 2 - колонны; 3 - стены

Рисунок 5.1. Фрагменты планов зданий

Нижние этажи часто решают в одной конструктивной системе, а верхние - в другой. Конструктивная система таких зданий является комбинированной.

Конструктивные схемы в стеновых КС определяются взаимным расположением стен, а в колонных КС - взаимным расположением межколонных балок (рис. 5.5) относительно поперечных и продольных осей здания. Схемы бывают поперечные, продольные и перекрестные. В реальных монолитных зданиях конструктивные схемы обычно перекрестные (рис. 5.5, в, г; 6.2, а). Чисто поперечные и продольные схемы (рис. 6.1, б, в) рассматриваются при разделении пространственной КС на две независимые (рис. 6.1, б, в и 6.2, б, в) с целью упрощения расчетов.



Конструктивные решения гражданских зданий из сборных железобетонных конструкций

Гражданские здания (жилые и общественные) могут возводиться в монолитном, сборно-монолитном и сборном исполнении.

Монолитные – здания возводятся из монолитного бетона в опалубке различного вида.

Сборно-монолитные – сочетание сборных элементов и монолитного бетона, например колонны и стены здания сборные, а перекрытия монолитные.

Сборные здания возводятся или монтируются из крупных элементов заводской готовности.

По этажности гражданские здания подразделяются на малоэтажные (высотой до 3-х этажей), многоэтажные (от 4 до 8-ми этажей), здания повышенной этажности (от 9 до 25 этажей) и высотные (свыше 25 этажей).

По конструктивной системе гражданские здания бывают:

Колонные (каркасные);

Стеновые (безкаркасные);

Смешанные.

В зданиях с несущими стенами нагрузку от перекрытий и крыши воспринимают стены: продольные, поперечные или и те и другие одновременно.

Каркасные здания имеют несущий каркас из сборных железобетонных колонн и ригелей. В зданиях с полным каркасом колонны устанавливаются во всех точках пересечения осей планировочной схемы.

В зданиях с неполным каркасом колонны располагаются только внутри здания. Наружные стены выполняются несущими или самонесущими, как правило, из каменной кладки.

Крупнопанельное здание собирается из крупноразмерных плоскостных сборных железобетонных элементов: стеновых панелей, панелей междуэтажных перекрытий и покрытий.

Конструктивная схема здания крупнопанельного здания принимается в зависимости от архитектурной компоновки, членения фасада здания, геологических особенностей основания и других факторов. Существуют следующие конструктивные схемы крупнопанельных зданий:

1. Бескаркасная схема:

С продольными несущими стенами.

С поперечными несущими стенами.

С продольными и поперечными несущими стенами.

2. Каркасно-панельная схема:

Полным каркасом.

С неполным каркасом.

Бескаркасная схема наиболее широко применяется при проектировании гражданских зданий высотой не более 16 этажей. Пространственная жесткость таких зданий обеспечивается совместной работой стен и плит перекрытий, соединяемых между собой при помощи сварки закладных деталей. При большей высоте по условиям обеспечения жесткости целесообразно выполнять каркасные здания с центральным ядром жесткости.

Каркасно-панельная схема применяется при проектировании многоэтажных общественных и производственных зданий. Несущей конструкцией является железобетонный каркас, стеновые панели в этом случае выполняют только ограждающие функции и являются навесными.

Железобетонный каркас может быть с поперечными ригелями, с продольными ригелями и безригельным (с безбалочными перекрытиями) – в этом случае плиты перекрытий опираются непосредственно на колонны.

В сборно-монолитных крупно-панельных зданиях выше 20-22 этажей для воспринятия нагрузок внутри каркаса устраивается ядро жесткости из монолитного бетона, как правило, для этой цели используется лифтовый узел. После возведения шахты вокруг устанавливаются сборные конструкции каркасного или панельного здания, которые жестко соединяются с ядром жесткости.

Здания объемно-блочной конструкции подразделяются на три основные конструктивные схемы:

1. Панельно-блочная – сочетание несущих объемных блоков с плоскими панелями плит перекрытий и навесными или самонесущими панелями наружных стен.

2. Каркасно-блочная – сочетание несущих блок-комнат с несущим каркасом. В зданиях такой конструкции все нагрузки воспринимаются железобетонным каркасом, блок-комнаты опираются на поперечные или продольные ригели.

3. Объемно-блочная – сплошная расстановка объемных элементов без применения плоских конструкций.

В бескаркасных зданиях, в зависимости от конструктивного решения, объемные элементы могут опираться друг на друга в четырех точках по углам – точечная схема опирания или по граням двух внутренних стенок блоков – линейная схема.

Здания из объемных элементов возводятся из блок-элементов (блок-комнат, блок-квартир, санитарно-технических кабин, лифтовых шахт и др.). Объемные элементы это готовые строительные блоки с выполненной отделкой или полностью подготовленные под отделку с установленным инженерным оборудованием. Блоки изготавливаются монолитным способом или собираются в заводских условиях с максимально возможносй степенью готовности.

Конструктивные решения одноэтажных промышленных зданий из сборных железобетонных конструкций

В зависимости от назначения промышленные здания подразделяются на:

Производственные, в которых размещаются основные производства.

Вспомогательные, в которых размещаются культурно-бытовые, административно-конторские помещения, столовые, лаборатории и т.п.

Здания промышленных предприятий классифицируют по их специфическим признакам, которые предусматривают назначение и принадлежность этих зданий к той или иной отрасли промышленности, а также этажности, числу пролетов, степени огнестойкости и долговечности, способу расположения внутренних опор и вида внутрицехового транспорта.

Одноэтажные промышленные здания компонуются, как правило, из параллельных пролетов одинаковой ширины и высоты с одинаковым подъемно-транспортным обобрудованием. Могут быть однопролетные и многопролетные

Тип зданий зависит от массы монтажных элементов:

Легкого типа – с массой монтажных элементов 5-9 т.

Среднего типа – с массой монтажных элементов 8-16т.

Тяжелого типа – с массой монтажных элементов 15-35т.

По расположению внутренних опор одноэтажные промышленные здания подразделяются на:

Пролетные.

Ячейковые.

Зальные с центральной опорой или без нее.

В пролетных зданиях ширина пролетов 12-36м с шагом колонн 6 или 12м. Технологические линии направлены вдоль пролета и обслуживаются кранами.

В ячейковых зданиях – квадратная сетка опор – 12х12,18х18, …36х36м и технологические линии располагаются во взаимно-перпендикулярном направлении.

Зальные здания имеют пролеты 60-100м и более с установкой большеразмерного оборудования для выпуска крупногабаритной продукции (ангары, машинные залы ТЭЦ и т.п.). Такие здания перекрывают, как правило, пространственными конструкциями.

Одноэтажные промышленные здания проектируются с полным и неполным каркасом. Они могут быть оснащены подъемно-транспортным оборудованием в виде мостовых кранов – опорных или подвесных или напольных кранов.

Общая устойчивость и геометрическая неизменяемость одноэтажного каркасного здания достигается в продольном направлении защемлением колонн в фундаментах и системой связей по колоннам, в поперечном направлении – защемлением колонн в фундаментах, а также жестким в своей плоскости диском покрытия.

В общем случае одноэтажное промышленное здание состоит из стен, колонн, покрытия, подкрановых балок, связей и фундаментов.

Железобетонные колонны по виду поперечного сечения могут быть сплошными (прямоугольного или двутаврового сечения) и сквозными (двухветвевые). В зависимости от назначения зданий и действующих нагрузок применяются следующие разновидности колонн:

Прямоугольные (безконсольные).

С консолями для опирания несущих конструкций покрытий.

С односторонними и двусторонними подкрановыми консолями.

Одноэтажное промышленное каркасное здание может иметь плоское покрытие – из линейных элементов или пространственное – из тонкостенных пространственных элементов.

Несущие конструкции покрытий подразделяются на главные (стропильные балки, фермы или арки) и второстепенные (крупнопанельные плиты, прогоны). В состав конструкций покрытия одноэтажного каркасного здания входят также фонари и связи.

Балки покрытий (стропильные балки) опираются на колонны или подстропильные балки. Стропильными балками перекрываются пролеты 6-24м при шаге колонн 6 или 12м. Подстропильные балки применяют в том случае, когда шаг колонны больше расстояния между стропильными балками.

Стропильные балки могут быть двускатными, односкатными и с параллельными горизонтальными поясами. Подстропильные балки бывают с параллельными и непараллельными поясами.

В качестве несущих конструкций покрытия кроме балок применяют железобетонные фермы. Применение ферм целесообразно при пролетах 18-30м и шаге колонн 6 или 12м. Железобетонные фермы могут быть цельными и составными.

Очертание фермы зависит от вида кровли, общей компоновки покрытия, а также от наличия, формы и расположения фонарей. Различают сегментные и полигональные фермы. Сегментные фермы с криволинейным верхним поясом называют арочными.

Полигональные фермы применяют с параллельными поясами, восходящими опорными раскосами и уклоном верхнего пояса 1:12, а также с нисходящими опорными раскосами и ломаным нижним поясом.

Второстепенные несущие конструкции покрытий могут непосредственно опираться на стропильные балки, фермы или арки (беспрогонная система покрытий) или поддерживаться системой прогонов, опирающихся на основные несущие конструкции покрытий (прогонная система покрытий).

Конструктивные решения каркасных многоэтажных зданий из сборных железобетонных конструкций

Основой многоэтажного каркасного здания является многоэтажная многопролетная железобетонная рама, ригели которой воспринимают нагрузку от панелей перекрытия и покрытия. Наружные стены, как правило, навесные из крупных панелей.

Каркасы многоэтажных зданий по схеме статической работы подразделяются на рамные, связевые и рамно-связевые.

В рамной схеме каркаса все горизонтальные нагрузки воспринимаются жестким сопряжением колонн и ригелей.

В связевой схеме каркасов горизонтальные нагрузки воспринимаются вертикальными диафрагмами жесткости или ядрами жесткости. Связевая схема каркаса исключает необходимость устройства жестких узлов в сопряжении ригелей с колоннами. которые могут выполняться шарнирными или с частичным защемлением ригелей на опоре.

В рамно-связевой схеме горизонтальные нагрузки распределяются между элементами связей и жестким сопряжением ригелей с колоннами (в одном или в двух направлениях).

Основными конструктивными элементами многоэтажных зданий являются: фундаменты, колонны, стены, перекрытия и покрытия.

Многоэтажные здания возводятся с полносборным железобетонным каркасом и самонесущими навесными стенами (панелями), а также с неполным каркасом и несущими стенами. Сборные конструкции перекрытий могут быть балочные и безбалочные.

Основными элементами безбалочного каркаса являются фундаменты, колонн, надколонные плиты, межколонные плиты, пролетные плиты.

Железобетонный каркас с безбалочным перекрытием используется при строительстве предприятий пищевой промышленности, холодильников, где предъявляются повышенные требования к чистоте.

Конструктивные решения селькохозяйственных сооружений из сборных железобетонных конструкций.

Инженерные сооружения из сборных железобетонных конструкций

Инженерные сооружения могут возводиться в сборном, монолитном или сборно-монолитном исполнении.

Резервуары и силосы из сборных железобетонных элементов используются, как правило, для хранения сыпучих материалов и жидкостей.

В цилиндрическом резервуаре днище выполняется из монолитного бетона, колонны опираются на сборные железобетонные подколонники. Стеновое ограждение выполняется сборным из железобетонных панелей, плиты покрытия сборные железобетонные, предварительно напряженные, трапециевидной формы в плане.

Силосы сооружаются круглыми, квадратными, многогранными с коническими и пирамидальными днищами и используются для хранения сыпучих материалов: цемента, зерна, минеральных удобрений. Высота стенок значительно больше размеров поперечного сечения. Силосы являются основными элементами корпусов элеваторов.

Железобетонный силос опирается на колонны. Силосы квадратной формы собираются, как правило, из замкнутых объемных элементов 3х3м, высотой 1,2м, массой 4т. Силосы круглой формы собираются из колец полной заводской готовности диаметром 3м и более, толщина стенок 60-100мм. Стенки блоков могут ребристыми или плоскими. Кольцевые блоки соединяются между собой горизонтальными болтами, а вертикальные соединения между блоками армируются и замоноличиваются.

Изучение старой жилой застройки Москвы, Санкт-Петербурга, Калининграда, Калуги и других городов России показало, что в пределах издавна сложившейся центральной части города основными объектами капитального ремонта и реконструкции являются двух-пятиэтажные жилые дома, построенные в начале прошлого века. Разнообразие конструктивных форм объектов старого фонда отличается сравнительно небольшим ассортиментом: материал – бутовый камень, кирпич, дерево; технология строительства — ручной труд.

Конструктивные решения домов старой постройки

Фундаменты при обычных грунтах, как правило, возводились ленточными из рваного бутового камня, реже — из пережженного кирпича-железняка на сложном растворе. На слабых, неравномерно сжимаемых грунтах, например, в Санкт-Петербурге, фундаменты часто устраивались на искусственном основании — на деревянных сваях или лежнях.

Несущие стены жилых зданий выкладывались на тяжелых цементных и известковых растворах из полнотелого красного кирпича наивысшего (по сегодняшним меркам) качества. Вследствие этого они сохранились гораздо лучше чем другие типы конструкций. Толщина стен составляет от 2,5 до 4 кирпичей. Жесткую связь продольных и поперечных каменных стен зданий обеспечивалась посредством установки скрытых связей из прочнейшего кованого железа. В целом, гражданские здания дореволюционных лет постройки характеризуются большим разнообразием конструктивных решений, наличием значительного количества поперечных стен, обеспечивающих высокую пространственную жесткость несущего остова. Вертикальную нагрузку в этих зданиях, как правило, воспринимают наружные и внутренние продольные стены. Изредка встречаются несущие деревянные фахверковые перегородки. Межкомнатные перегородки устраивались деревянными (оштукатуренными с двух сторон по дранке), либо кирпичными.

Основным типом перекрытий в старых каменных зданиях является перекрытие по деревянным балкам с накатом из пластин или досок. Шаг несущих балок по дореволюционному «урочному положению» назначался обычно равным 1-1,5 м. Полы в жилой зоне – деревянные, паркетные либо линолеум. В мокрых помещениях и в зоне лестнично-лифтовых узлов — из метлахской плитки, либо цементные с железнением.

Стропильная система скатных крыш устраивались из бревен наслонного и висячего типа. Конструкция лестниц в большинстве каменных зданий решена в виде каменных или бетонных наборных ступеней, уложенных по стальным косоурам. В лестницах с одним косоуром на марш ступени одним концом заделывались в кладку стен.

Типизация конструктивных решений старого фонда

Исследованиями и типизацией конструктивных решений в сфере капитального ремонта и реконструкции жилых домов старой постройки занимается ряд научно-исследовательских организаций. Результаты исследований сведены в единую систему и рассортированы на группы и категории по множеству классификационных признаков.

На рис.1. приведен схематический план и разрез жилого дома с обозначением конструктивных элементов и технико-экономических параметров, представляющих наибольший интерес для проектировщиков и строителей, работающих в сфере реконструкции домов старой застройки.

Рис.1. Схематический план и разрез жилого дома старой постройки с обозначением основных параметров типизации

Анализ данных, накопленных инженерами и строителями в процессе исследований, позволяет сделать следующие выводы:

1. Наиболее часто встречается двухпролетная схема жилых домов (с 1-й внутренней стеной), реже — трехпролетная (с 2-мя внутренними стенами). На долю этих схем приходится 53-54%, т.е. большая половина всех домов.

2. Расстояния «в свету» между несущими стенами составляет:

  • в Москве от 4 до 7 м — 51 %; от 7 и более — 46‚9%;
  • в Санкт-Петербурге от 4 до 7 м — 77‚1 %; от 7 и более — 16,7%.

3. Наиболее распространенные расстояния между осями наружных простенков:

  • в Москве от 2 до 2,5 м — 80‚5%;
  • в Санкт-Петербурге от 1,75 до 2,75 м — 87‚9%.

4. Наружные стены в своей верхней части, на уровне чердачного перекрытия, имеют толщину от 60 до 90 см, а внутренние стены — от 40 до 80 см.

5. Толщина перекрытий и полов составляет от 33 до 40 см (89,6%).

6. Высоты этажей также разнятся в больших пределах. Однако в Москве зданий с высотой этажей от 3 до 4 м — 93‚1%‚ а в Санкт-Петербурге — 84,3%.

Рассмотренные конструктивные характеристики жилых домов старой постройки должны быть положены в основу разработки индустриальных инженерных решений.

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.


Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторонувнутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.

Вопрос 4.2. Могут ли ряды кирпичей, уложенные длинной стороной вдоль стены, называться тычковыми рядами?

4.2. ответ: да

Общие требования и классификация

Одной из наиболее важных и сложных конструктивных элементов здания является наружная стена (4.1).

Наружные стены подвергаются многочисленным и разнообразным силовым и несиловым воздействиям (рис.4.1). Они воспринимают собственную массу, постоянные и временные нагрузки от перекрытий и крыш, воздействия ветра, неравномерных деформаций основания, сейсмических сил и др. С внешней стороны наружные стены подвержены воздействию солнечной радиации, атмосферных осадков, переменных температур и влажности наружного воздуха, внешнего шума, а с внутренней – воздействию теплового потока, потока водяного пара, шума.

Рис.4.1. Нагрузки и воздействия на конструкцию наружной стены.

Выполняя функции наружной ограждающей конструкции и композиционного элемента фасадов, а часто и несущей конструкции, наружная стена должна отвечать требованиям прочности, долговечности и огнестойкости, соответствующим классу капитальности здания, защищать помещения от неблагоприятных внешних воздействий, обеспечивать необходимый температурно-влажностный режим ограждаемых помещений, обладать декоративными качествами. Одновременно конструкция наружной стены должна удовлетворять требованиям индустриальности, а также экономическим требованиям минимальной материалоемкости и стоимости, так как наружные стены являются наиболее дорогой конструкцией (20 – 25% стоимости всех конструкций здания).

В наружных стенах обычно располагают оконные проемы для освещения помещений и дверные проемы – входные и для выхода на балконы и лоджии. В комплекс конструкций стены включают заполнение проемов окон, входных и балконных дверей, конструкции открытых помещений. Эти элементы и их сопряжения со стеной должны отвечать перечисленным выше требованиям. Поскольку статические функции стен и их изоляционные свойства достигаются при взаимодействии с внутренними несущими конструкциями, разработка конструкций наружных стен включает решение сопряжений и стыков с перекрытиями, внутренними стенами или каркасом.



Деформационные швы

Наружные стены, а вместе с ними и остальные конструкции здания при необходимости и в зависимости от природно-климатических и инженерно-геологических условий строительства, а также с учетом особенностей объемно-планировочных решений рассекаются вертикальными деформационными швами (4.2) различных типов: температурно-усадочными, осадочными, антисейсмическими и др. (рис.4.2).

Рис.4.2. Деформационные швы: а – температурно-усадочный; б – осадочный І типа; в – осадочный ІІ типа; г – антисейсмический.

Температурно-усадочные швы устраивают во избежание образования в стенах трещин и перекосов, вызываемых концентрацией усилий от воздействия переменных температур и усадки материала (каменной кладки, монолитных или сборных бетонных конструкций и др.). Температурно-усадочные швы рассекают конструкции только наземной части здания. Расстояния между температурно-усадочными швами назначают в соответствии с климатическими условиями и физико-механическими свойствами стеновых материалов. Так, например, для наружных стен из глиняного кирпича на растворе марки М50 и более расстояния между температурно-усадочными швами 40 – 100 м принимают по СНиП ІІ-22-81 «Каменные и армокаменные конструкции». При этом наименьшее расстояние относится к наиболее суровым климатическим условиям.

В зданиях с продольными несущими стенами швы устраивают в зоне примыкания к поперечным стенам или перегородкам, в зданиях с поперечными несущими стенами швы часто устраивают в виде двух спаренных стен. Наименьшая ширина шва составляет 20 мм. Швы необходимо защищать от продувания, промерзания и сквозных протечек с помощью металлических компенсаторов, герметизации, утепляющих вкладышей. Примеры конструктивных решений температурно-усадочных швов в кирпичных и панельных стенах даны на рис.4.3.

Рис.4.3. Детали устройства температурных швов в кирпичных и панельных зданиях: а – с продольными несущими стенами (в зоне поперечной диафрагмы жесткости); б – с поперечными стенами при парных внутренних стенах; в – в панельных зданиях с поперечными стенами; 1 – наружная стена; 2 – внутренняя стена; 3 – утепляющий вкладыш в обертке из рубероида; 4 – конопатка; 5 – раствор; 6 – нащельник; 7 – плита перекрытия; 8 – панель наружной стены; 9 – то же, внутренней.

Осадочные швы следует предусматривать в местах резких перепадов этажности здания (осадочные швы первого типа), а также при значительной неравномерности деформаций основания по протяженности здания, вызванной спецификой геологического строения основания (осадочные швы второго типа). Осадочные швы первого типа назначают для компенсации различий вертикальных деформаций наземных конструкций высокой и низкой частей здания, в связи с чем их устраивают аналогично температурно-усадочным только в наземных конструкциях. Конструкция шва в бескаркасных зданиях предусматривает устройство шва скольжения в зоне опирания перекрытия малоэтажной части здания на стены многоэтажной, в каркасных – шарнирное опирание ригелей малоэтажной части на колонны многоэтажной. Осадочные швы второго типа разрезают здание на всю высоту – от конька до подошвы фундамента. Такие швы в бескаркасных зданиях конструируют в виде парных рам. Номинальная ширина осадочных швов первого и второго типа 20 мм.

Классификация стен

Конструкции наружных стен классифицируют по следующим признакам:

Статической функции стены, определяемой ее ролью в конструктивной системе здания;

Материала и технологии возведения, определяемыми строительной системой здания;

Конструктивного решения – в виде однослойной или слоистой ограждающей конструкции.

По статической функции различают (рис.4.4) несущие стены (4.3), самонесущие стены (4.4) и ненесущие стены (4.5).

Рис.4.4. Классификация наружных стен по несущей способности: а – несущие; б – самонесущие; в - ненесущие

Ненесущие стены поэтажно оперты на смежные внутренние конструкции здания (перекрытия, стены, каркас).

Несущие и самонесущие стены воспринимают наряду с вертикальными и горизонтальные нагрузки, являясь вертикальными элементами жесткости сооружений. В зданиях с ненесущими наружными стенами функции вертикальных элементов жесткости выполняют каркас, внутренние стены, диафрагмы или стволы жесткости.

Несущие и ненесущие наружные стены могут быть применены в зданиях любой этажности. Высота самонесущих стен ограничена в целях предотвращения неблагоприятных в эксплуатационном отношении взаимных смещений самонесущих и внутренних несущих конструкций, сопровождающихся местными повреждениями отделки помещений и появлением трещин. В панельных домах, например, допустимо применение самонесущих стен при высоте здания не более 4 этажей. Устойчивость самонесущих стен обеспечивают гибкие связи с внутренними конструкциями.

Несущие наружные стены применяют в зданиях различной высоты. Предельная этажность несущей стены зависит от несущей способности и деформативности ее материала, конструкции, характера взаимосвязей с внутренними конструкциями, а также от экономических соображений. Так, например, применение панельных легкобетонных стен целесообразно в домах высотой до 9 – 12 этажей, несущих кирпичных наружных стен – в зданиях средней этажности, а стен стальной решетчатой оболочковой конструкции – в 70 – 100 этажных зданиях.

По материалу различают четыре основных типа конструкций стен: бетонные, каменные, из небетонных материалов и деревянные. В соответствии со строительной системой каждый тип стены содержит несколько видов конструкций: бетонные стены – из монолитного бетона, крупных блоков или панелей; каменные стены – кирпичные или из мелких блоков, стены из каменных крупных блоков и панелей; деревянные стены – рубленые, каркасно-щитовые, щитовые и панельные.

Наружные стены могут быть однослойной или слоистой конструкции. Однослойные стены возводят из панелей, бетонных или каменных блоков, монолитного бетона, камня, кирпича, деревянных бревен или брусьев. В слоистых стенах выполнение разных функций возложено на различные материалы. Функции прочности обеспечивают бетон, камень, дерево; функции долговечности – бетон, камень, дерево или листовой материал (алюминиевые сплавы, эмалированная сталь, асбестоцемент или др.); функции теплоизоляции – эффективные утеплители (минераловатные плиты, фибролит, пенополистирол и др.); функции пароизоляции – рулонные материалы (прокладочный рубероид, фольга и др.), плотный бетон или мастики; декоративные функции – различные облицовочные материалы. В число слоев такой ограждающей конструкции может быть включена воздушная прослойка. Замкнутая – для повышения ее сопротивления теплопередаче, вентилируемая – для защиты помещения от радиационного перегрева либо для уменьшения деформаций наружного облицовочного слоя стены.

Вопрос 4.1. Могут ли стены называться несущими, если они воспринимают нагрузку не только от собственного веса, но и от других элементов здания?

4.1. ответ: да

4.1. ответ: НЕТ

Конструктивные решения стен

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.

Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторону – внутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.

Вопрос 4.2. Могут ли ряды кирпичей, уложенные длинной стороной вдоль стены, называться тычковыми рядами?

4.2. ответ: да

Конструктивные решения наружных стен энергоэффективных зданий, применяемые при строительстве жилых и общественных сооружений, можно разделить на 3 группы (рис.1):

    однослойные;

    двухслойные;

    трехслойные.

Однослойные наружные стены выполняются из ячеистобетонных блоков, которые, как правило, проектируют самонесущими с поэтажным опиранием на элементы перекрытия, с обязательной защитой от внешних атмосферных воздействий путем нанесения штукатурки, облицовки и т.д. Передача механических усилий в таких конструкциях осуществляется через железобетонные колонны.

Двухслойные наружные стены содержат несущий и теплоизоляционный слои. При этом утеплитель может быть расположен как снаружи, так и изнутри.

В начале реализации программы энергосбережения в Самарской области в основном применялось внутреннее утепление. В качестве теплоизоляционного материала использовались пенополистирол и плиты из штапельного стекловолокна «URSA». Со стороны помещения утеплители защищались гипсокартоном или штукатуркой. Для защиты утеплителей от увлажнения и накопления влаги устанавливалась пароизоляция в виде полиэтиленовой пленки.

Рис. 1. Виды наружных стен энергоэффективных зданий:

а – однослойная, б – двухслойные, в – трехслойные;

1 – штукатурка; 2 – ячеистый бетон;

3 – защитный слой; 4 – наружная стена;

5 – утеплитель; 6 – фасадная система;

7 – ветрозащитная мембрана;

8 – вентилируемый воздушный зазор;

11 – облицовочный кирпич; 12 – гибкие связи;

13 – керамзитобетонная панель; 14 – фактурный слой.

При дальнейшей эксплуатации зданий выявилось много дефектов, связанных с нарушением воздухообмена в помещениях, появлением темных пятен, плесени и грибков на внутренних поверхностях наружных стен. Поэтому в настоящее время внутреннее утепление используется лишь при установке приточно-вытяжной механической вентиляции. В качестве утеплителей применяются материалы с низким водопоглощением, например, пеноплекс и напыляемый пенополиуретан.

Системы с наружным утеплением имеют ряд существенных преимуществ. К ним относятся: высокая теплотехническая однородность, ремонтопригодность, возможность реализации архитектурных решений различной формы.

В практике строительства находят применение два варианта фасадных систем: с наружным штукатурным слоем; с вентилируемым воздушным зазором.

При первом варианте исполнения фасадных систем в качестве утеплителей в основном используются плиты пенополистирола. Утеплитель от внешних атмосферных воздействий защищен базовым клеевым слоем, армированной стеклосеткой и декоративным слоем.

В вентилируемых фасадах используется лишь негорючий утеплитель в виде плит из базальтового волокна. Утеплитель защищен от воздействия атмосферной влаги фасадными плитами, которые крепятся к стене с помощью кронштейнов. Между плитами и утеплителем предусматривается воздушный зазор.

При проектировании вентилируемых фасадных систем создается наиболее благоприятный тепловлажностный режим наружных стен, так как водяные пары, проходящие через наружную стену, смешиваются с наружным воздухом, поступающим через воздушную прослойку, и выбрасываются на улицу через вытяжные каналы.

Трехслойные стены, возводимые ранее, применялись, в основном, в виде колодцевой кладки. Они выполнялись из мелкоштучных изделий, расположенных между наружным и внутренним слоями утеплителя. Коэффициент теплотехнической однородности конструкций относительно невелик (r < 0,5) из-за наличия кирпичных перемычек. При реализации в России второго этапа энергосбережения достичь требуемых значений приведенного сопротивления теплопередаче с помощью колодцевой кладки не представляется возможным.

В практике строительства широкое применение нашли трехслойные стены с использованием гибких связей, для изготовления которых применяется стальная арматура, с соответствующими антикоррозионными свойствами стали или защитных покрытий. В качестве внутреннего слоя используется ячеистый бетон, а теплоизоляционных материалов – пенополистирол, минеральные плиты и пеноизол. Облицовочный слой выполняется из керамического кирпича.

Трехслойные бетонные стены при крупнопанельном домостроении применяются давно, но с более низким значением приведенного сопротивления теплопередаче. Для повышения теплотехнической однородности панельных конструкций необходимо использовать гибкие стальные связи в виде отдельных стержней или их комбинаций. В качестве промежуточного слоя в таких конструкциях чаще применяется пенополистирол.

В настоящее время широкое применение находят трехслойные сэндвич-панели для строительства торговых центров и промышленных объектов.

В качестве среднего слоя в таких конструкциях применяются эффективные теплоизоляционные материалы – минвата, пенополистирол, пенополиуретан и пеноизол. Трехслойные ограждающие конструкции отличаются неоднородностью материалов в сечении, сложной геометрией и стыками. По конструктивным причинам для образования связей между оболочками необходимо, чтобы более прочные материалы проходили через теплоизоляцию или заходили в нее, нарушая тем самым однородность теплоизоляции. В этом случае образуются так называемые мостики холода. Типичными примерами таких мостиков холода могут служить обрамляющие ребра в трехслойных панелях с эффективным утеплением жилых зданий, угловое крепление деревянным брусом трехслойных панелей с облицовками из древесностружечной плиты и утеплителями и т.д.