Камни по знакам зодиака

Деформации. Продольные и поперечные деформации. Коэффициент Пуассона. Закон Гука Продольные и поперечные деформации закон гука

Отношение абсолютного удлинения стержня к его первоначальной длине называетсяотносительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
.
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах. Например, для пробки, для каучука, для стали, для золота.

Закон Гука
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь - сила, которой растягивают (сжимают) стержень, - абсолютное удлинение (сжатие) стержня, а - коэффициент упругости (или жёсткости).
Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.
Если ввести относительное удлинение

И нормальное напряжение в поперечном сечении

То закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Модуль Юнга
Модуль Юнга (модуль упругости) - физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации.
Модуль Юнга рассчитывается следующим образом:

Где:
E - модуль упругости,
F - сила,
S - площадь поверхности, по которой распределено действие силы,
l - длина деформируемого стержня,
x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

Где - плотность вещества.
Коэффициент Пуассона
Коэффициент Пуассона (обозначается как или) - абсолютная величина отношения поперечной к продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец.
Уравнение
,
где
- коэффициент Пуассона;
- деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии);
- продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета напря­жений и перемещений.

Уметь проводить расчеты на прочность и жесткость стати­чески определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).

В сопротивлении материалов принято рассчитывать деформа­ции в относительных единицах:

Между продольной и поперечной деформациями существует за­висимость

где μ - коэффициент поперечной деформации, или коэффициент Пуассона, -характеристика пластичности материала.

Закон Гука

В пределах упругих деформаций деформации прямо пропорци­ональны нагрузке:

- коэффициент. В современной форме:

Получим зависимость

Где Е - модуль упругости, ха­рактеризует жесткость материала.

В пределах упругости нормальные напряжения пропорциональ­ны относительному удлинению.

Значение Е для сталей в пределах (2 – 2,1) 10 5 МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии

Используем известные формулы.

Относительное удлинение

В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:

Δl - абсолютное удлинение, мм;

σ - нормальное напряжение, МПа;

l - начальная длина, мм;

Е - модуль упругости материала, МПа;

N - продольная сила, Н;

А - площадь поперечного сечения, мм 2 ;

Произведение АЕ называют жесткостью сечения.

Выводы

1. Абсолютное удлинение бруса прямо пропорционально вели­чине продольной силы в сечении, длине бруса и обратно пропорцио­нально площади поперечного сечения и модулю упругости.



2. Связь между продольной и поперечной деформациями зави­сит от свойств материала, связь определяется коэффициентом Пуас­сона, называемом коэффициентом поперечной деформации.

Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.

3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная дефор­мация рассчитывается через продольную.

где Δа - поперечное сужение, мм;

а о - начальный поперечный раз­мер, мм.

4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяже­ния (рис. 21.2).

При работе пластические деформации не должны возни­кать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расче­ты в сопротивлении материалов проводятся в зоне упругих де­формаций, где действует закон Гука.

На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1 .

5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.

Примеры решения задач

Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.

Решение

1. Брус ступенчатый, по­этому следует построить эпюры продольных сил и нормальных напряжений.

Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.

2. Определяем величины нор­мальных напряжений по сечениям с учетом изменений площади поперечного сечения.

Строим эпюру нормальных напряжений.

3. На каждом участке опре­деляем абсолютное удлинение. Результаты алгебраически сумми­руем.

Примечание. Балка за­щемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со сво­бодного конца (справа).

1. Два участка нагружения:

участок 1:

растянут;

участок 2:


Три участка по напряжениям:


Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормаль­ных напряжений по его длине, а также определить пере­мещения свободного конца и сечения С, где приложена сила Р 2 . Модуль продольной упругости материала Е = 2,1 10 5 Н/"мм 3 .

Решение

1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.

2. Вычислим напряжения в поперечных сечениях каж­дого участка:

для первого

для второго

для третьего

для четвертого

для пятого

Эпюра нормальных напряжений построена на рис. 2.9, в.

3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса опреде­ляется как алгебраическая сумма удлинений (укорочений) всех его участков:

Подставляя числовые значения, получаем

4. Перемещение сечения С, в котором приложена сила Р 2 , определяется как алгебраическая сумма удлинений (уко­рочений) участков ///, IV, V:

Подставляя значения из предыдущего расчета, полу­чаем

Таким образом, свободный правый конец бруса пере­мещается вправо, а сечение, где приложена сила Р 2 , - влево.

5. Вычисленные выше значения перемещений можно полу­чить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р 1 ; Р 2; Р 3 в отдельности и суммируя ре­зультаты. Рекомендуем учащемуся проделать это само­стоятельно.

Пример 3. Определить, какое напряжение возни­кает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l 1 = 200,2 мм. Е = 2,1*10 6 Н/мм 2 .

Решение

Абсолютное удлинение стержня

Продольная деформация стержня

Согласно закону Гука

Пример 4. Стенной кронштейн (рис. 2.10, а ) со­стоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F 1 = 1 см 2 , площадь сечения подкоса F 2 = 25 см 2 . Определить горизонтальное и вертикальное перемещения точки В, если в ней под­вешен груз Q = 20 кН. Модули продольной упругости стали E ст = 2,1*10 5 Н/мм 2 , дерева Е д = 1,0*10 4 Н/мм 2 .

Решение

1. Для определения продольных усилий в стерж­нях АВ и ВС вырезаем узел В. Предполагая, что стерж­ни АВ и ВС растянуты, направляем возникающие в них усилия N 1 и N 2 от узла (рис. 2.10, 6 ). Составляем уравнения равновесия:

Усилие N 2 получилось со знаком минус. Это указы­вает на то, что первоначальное предположение о направ­лении усилия неверно - фактически этот стержень сжат.

2. Вычислим удлинение стальной тяги Δl 1 и укорочение подкоса Δl 2:

Тяга АВ удлиняется на Δl 1 = 2,2 мм; подкос ВС уко­рачивается на Δl 1 = 7,4 мм.

3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если де­формированные стержни АВ 1 и В 2 С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В 1 и В 2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В 1 В" и В 2 В", соответственно перпендикулярными к АВ 1 и СВ 2 . Пересечение этих перпендикуляров (точка В") дает новое положение точки (шарнира) В.

4. На рис. 2.10, г диаграмма перемещений точки В изо­бражена в более крупном масштабе.

5. Горизонтальное пере­мещение точки В

Вертикальное

где составляющие отрезки определяются из рис. 2.10, г;

Подставляя числовые значения, окончательно получаем

При вычислении перемещений в формулы подстав­ляются абсолютные значения удлинений (укорочений) стержней.

Контрольные вопросы и задания

1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)

2. Что характеризует коэффициент поперечной деформации?

3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.

4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?

5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?

6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?

7. Ответьте на вопросы тестового задания.

План лекции

1. Деформации, закон Гука при центральном растяжении-сжатии стержней.

2. Механические характеристики материалов при центральном растяжении и сжатии.

Рассмотрим стержневой элемент конструкции в двух состояниях (см. рисунок 25):

Внешняя продольная сила F отсутствует, начальная длина стержня и его поперечный размер равны соответственно l и b , площадь сечения А одинакова по всей длине l (внешний контур стержня показан сплошными линиями);

Внешняя продольная растягивающая сила, направленная вдоль центральной оси, равна F , длина стержня получила приращение Δl , при этом его поперечный размер уменьшился на величину Δb (внешний контур стержня в деформированном положении показан пунктирными линиями).

l Δl

Рисунок 25. Продольно-поперечная деформация стержня при его центральном растяжении.

Приращение длины стержня Δl называется его абсолютной продольной деформацией, величина Δb – абсолютной поперечной деформацией. Величина Δl может трактоваться как продольное перемещение (вдоль оси z) концевого поперечного сечения стержня. Единицы измерения Δl и Δb те же, что и начальные размеры l и b (м, мм, см). В инженерных расчетах применяется следующее правило знаков для Δl : при растяжении участка стержня происходит увеличение его длины и величина Δl положительна; если же на участке стержня с начальной длиной l возникает внутренняя сжимающая сила N , то величина Δl отрицательна, т. к. происходит отрицательное приращение длины участка.

Если абсолютные деформации Δl и Δb отнести к начальным размерам l и b , то получим относительные деформации:


– относительная продольная деформация;

– относительная поперечная деформация.

Относительные деформации и являются безразмерными (как правило,

очень малыми) величинами, их именуют обычно е. о. д. – единицами относительных деформаций (например, ε = 5,24·10 -5 е. о. д.).

Абсолютное значение отношения относительной продольной деформации к относительной поперечной деформации является очень важной константой материала, называемой коэффициентом поперечной деформации или коэффициентом Пуассона (по фамилии французского ученого)

Как видно коэффициент Пуассона количественно характеризует соотношение между величинами относительной поперечной деформацией и относительной продольной деформацией материала стержня при приложении внешних сил вдоль одной оси. Значения коэффициента Пуассона определяются экспериментально и для различных материалов приводятся в справочниках. Для всех изотропных материалов значения лежит в пределах от 0 до 0,5 (для пробки близко к 0, для каучука и резины близко к 0,5). В частности, для прокатных сталей и алюминиевых сплавов в инженерных расчетах обычно принимается , для бетона .



Зная значение продольной деформации ε (например, в результате замеров при проведении экспериментов) и коэффициент Пуассона для конкретного материала (который можно взять из справочника) можно вычислить значение относительной поперечной деформации

где знак минус свидетельствует о том, что продольные и поперечные деформации всегда имеют противоположные алгебраические знаки (если стержень удлиняется на величину Δl растягивающей силой, то продольная деформация положительна, т. к. длина стержня получает положительное приращение, но при этом поперечный размер b уменьшается, т. е. получает отрицательное приращение Δb и поперечная деформация отрицательна; если же стержень будет сжиматься силой F , то, наоборот, продольная деформация станет отрицательной, а поперечная – положительной).

Внутренние усилия и деформации, возникающие в элементах конструкций под действием внешних нагрузок, представляют собой единый процесс, в котором все факторы взаимосвязаны между собой. Прежде всего, нас интересует взаимосвязь между внутренними усилиями и деформациями, в частности, при центральном растяжении-сжатии стержневых элементов конструкций. При этом, как и выше, будем руководствоваться принципом Сен-Венана: распределение внутренних усилий существенно зависит от способа приложения внешних сил к стержню лишь вблизи места нагружения (в частности, при приложении сил к стержню через малую площадку), а в частях, достаточно удаленных от мест


приложения сил распределение внутренних усилий зависит только от статического эквивалента этих сил, т. е. при действии растягивающих или сжимающих сосредоточенных сил будем считать, что в большей части объема стержня распределение внутренних сил будет равномерным (это подтверждается многочисленными экспериментами и опытом эксплуатации конструкций).

Английским ученым Робертом Гуком еще в 17-м веке была установлена прямая пропорциональная (линейная) зависимость (закон Гука) абсолютной продольной деформации Δl от растягивающей (или сжимающей) силы F . В 19-м веке английским ученым Томасом Юнгом сформулирована идея о том, что для каждого материала существует постоянная величина (названная им модулем упругости материала), характеризующая его способность сопротивляться деформированию при действии внешних сил. При этом Юнг первый указал на то, что линейный закон Гука справедлив только в определенной области деформирования материала, а именно – при упругих его деформациях .

В современном представлении применительно к одноосному центральному растяжению-сжатию стержней закон Гука используется в двух видах.

1) Нормальное напряжение в поперечном сечении стержня при центральном растяжении прямо пропорционально его относительной продольной деформации

, (1-й вид закона Гука),

где Е – модуль упругости материала при продольных деформациях, значения которого для различных материалов определены экспериментальным путем и занесены в справочники, которыми технические специалисты пользуются при проведении различных инженерных расчетов; так, для прокатных углеродистых сталей, широко применяемых в строительстве и машиностроении ; для алюминиевых сплавов ; для меди ; для других материалов значение Е всегда можно найти в справочниках (см., например, «Справочник по сопротивлению материалов» авторов Писаренко Г.С. и др.). Единицы измерения модуля упругости Е те же, что и единицы измерения нормальных напряжений, т. е. Па , МПа , Н/мм 2 и др.

2) Если в записанном выше 1-м виде закона Гука нормальное напряжение в сечении σ выразить через внутреннюю продольную силу N и площадь поперечного сечения стержня А , т. е. , а относительную продольную деформацию – через начальную длину стержня l и абсолютную продольную деформацию Δl , т. е. , то после простых преобразований получим формулу для практических расчетов (продольная деформация прямо пропорциональна внутренней продольной силе)

(2-й вид закона Гука). (18)

Из этой формулы следует, что с увеличением значения модуля упругости материала Е абсолютная продольная деформация стержня Δl уменьшается. Таким образом, сопротивляемость элементов конструкций деформациям (их жесткость) можно увеличить путем применения для них материалов с более высокими значениями модуля упругости Е . Среди широко применяемых в строительстве и машиностроении конструкционных материалов высоким значением модуля упругости Е обладают стали. Диапазон изменения величины Е для разных марок сталей небольшой: (1,92÷2,12)·10 5 МПа . У алюминиевых сплавов, например, величина Е примерно в три раза меньше, чем у сталей. Поэтому для


конструкций, к жесткости которых предъявляются повышенные требования, предпочтительными материалами являются стали.

Произведение называют параметром жесткости (или просто жесткостью) сечения стержня при его продольных деформациях (единицы измерения продольной жесткости сечения – Н , кН, МН ). Величина с = Е·А/l называется продольной жесткостью стержня длиной l (единицы измерения продольной жесткости стержня с Н/м , кН/м ).

Если стержень имеет несколько участков (n ) с переменной продольной жесткостью и сложной продольной нагрузкой (функция внутренней продольной силы от координаты z сечения стержня), то суммарная абсолютная продольная деформация стержня определится по более общей формуле

где интегрирование проводится в пределах каждого участка стержня длиной , а дискретное суммирование – по всем участкам стержня от i = 1 до i = n .

Закон Гука широко применяется в инженерных расчетах конструкций, поскольку большинство конструкционных материалов в процессе эксплуатации могут воспринимать весьма значительные напряжения, не разрушаясь в пределах упругих деформаций.

При неупругих (пластических или упруго-пластических) деформациях материала стержня прямое применение закона Гука неправомерно и, следовательно, вышеприведенные формулы использовать нельзя. В этих случаях следует применять другие расчетные зависимости, которые рассматриваются в специальных разделах курсов «Сопротивление материалов», «Строительная механика», «Механика твердого деформируемого тела», а также в курсе «Теория пластичности».

Законы Р. Гука и С. Пуассона

Рассмотрим деформации стержня, представленного на рис. 2.2.

Рис. 2.2 Продольные и поперечные деформации при растяжении

Обозначим через абсолютное удлинение стержня. При растяжении – это положительная величина. Через – абсолютную поперечную деформацию. При растяжении – это отрицательная величина. Знаки и соответственно меняются при сжатии.

Отношения

(эпсилон) или , (2.2)

называют относительным удлинением. Оно положительно при растяжении.

Отношения

Или , (2.3)

называют относительной поперечной деформацией. Она отрицательна при растяжении.

Р. Гук в 1660 г. открыл закон, который гласил: «Каково удлинение, такова сила». В современном написании закон Р. Гука записывается так:

то есть напряжение пропорционально относительной деформации. Здесь – модуль упругости первого рода Э. Юнга – это физическая постоянная в пределах действия закона Р. Гука. Для различных материалов она различна. Например, для стали она равна 2·10 6 кгс/см 2 (2·10 5 МПа), для дерева – 1·10 5 кгс/см 2 (1·10 4 МПа), для резины – 100 кгс/см 2 (10 МПа) и т.д.

Учитывая, что , а , получим

где – продольная сила на силовом участке;

– длина силового участка;

– жесткость при растяжении-сжатии.

То есть абсолютная деформация пропорциональна продольной силе, действующей на силовом участке, длине этого участка и обратно пропорциональна жесткости при растяжении-сжатии.

При подсчете по действию внешних нагрузок

где – внешняя продольная сила;

– длина участка стержня, на котором она действует. В этом случае применяют принцип независимости действия сил*).

С. Пуассон доказал, что соотношение – есть постоянная величина, различная для различных материалов, то есть

или , (2.7)

где – коэффициент С. Пуассона. Это, вообще говоря, отрицательная величина. В справочниках ее значение дается «по модулю». Например, для стали она равна 0,25…0,33, для чугуна – 0,23…0,27, для резины – 0,5, для пробки – 0, то есть . Однако для древесины он может быть и больше 0,5.

Экспериментальное исследование процессов деформации и

Разрушения растянутых и сжатых стержней

Русский ученый В.В. Кирпичев доказал, что деформации геометрически подобных образцов подобны, если подобно расположить действующие на них силы, и что по результатам испытаний небольшого образца можно судить о механических характеристиках материала. При этом, конечно, учитывается масштабный фактор, для чего вводится масштабный коэффициент, определяемый экспериментально.

Диаграмма растяжения малоуглеродистой стали

Испытания производят на машинах разрывного действия с одновременной записью диаграммы разрушения в координатах – сила, – абсолютная деформация (рис. 2.3, а). Затем производят пересчет эксперимента с целью построения условной диаграммы в координатах (рис. 2.3, б).

По диаграмме (рис. 2.3, а) можно проследить следующее:

– до точки справедлив закон Гука;

– от точки до точки деформации остаются упругими, но закон Гука уже не справедлив;

– от точки до точки деформации растут без увеличения нагрузки. Здесь происходит разрушение цементного каркаса ферритовых зерен металла, и нагрузка передается на эти зерна. Появляются линии сдвига Чернова–Людерса (под углом 45° к оси образца);

– от точки до точки – стадия вторичного упрочнения металла. В точке нагрузка достигает максимума, и затем появляется сужение в ослабленном сечении образца – «шейка»;

– в точке – образец разрушается.

Рис. 2.3 Диаграммы разрушения стали при растяжении и сжатии

Диаграммы позволяют получить следующие основные механические характеристики стали:

– предел пропорциональности – наибольшее напряжение, до которого справедлив закон Гука (2100…2200 кгс/см 2 или 210…220 МПа);

– предел упругости – наибольшее напряжение, при котором деформации еще остаются упругими (2300 кгс/см 2 или 230 МПа);

– предел текучести – напряжение, при котором деформации растут без увеличения нагрузки (2400 кгс/см 2 или 240 МПа);

– предел прочности – напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом за время опыта (3800…4700 кгс/см 2 или 380…470 МПа);

Рассмотрим прямой стержень постоянного поперечного сечения, жестко закрепленный сверху. Пусть стержень имеет длину и нагружен растягивающей силой F . От действия этой силы длина стержня увеличивается на некоторую величину Δ (рис.9.7,а).

При сжатии стержня такой же силой F длина стержня сократится на такую же величину Δ (рис.9.7,б).

Величина Δ , равная разности между длинами стержня после деформации и до деформации, называется абсолютной линейной деформацией (удлинением или укорочением) стержня при его растяжении или сжатии.

Отношение абсолютной линейной деформации Δ к первоначальной длине стержня называется относительной линейной деформацией и обозначается буквой ε илиε x ( где индекс x указывает направление деформации). При растяжении или сжатии стержня величину ε просто называют относительной продольной деформацией стержня. Она определяется по формуле:

Многократные исследования процесса деформирования растянутого или сжатого стержня в упругой стадии, подтвердили существование прямой пропорциональной зависимости между нормальным напряжением и относительной продольной деформацией. Эта зависимость называется законом Гука и имеет вид:

Величина E называется модулем продольной упругости или модулем первого рода. Она является физической постоянной (константой) для каждого вида материала стержня и характеризует его жесткость. Чем больше величина E , тем меньше будет продольная деформация стержня. Величина E измеряется в тех же единицах, что и напряжение, то есть в Па , МПа , и тому подобное. Величины модуля упругости содержатся в таблицах справочной и учебной литературы. Например, величина модуля продольной упругости стали принимается равной E = 2∙10 5 МПа , а древесины

E = 0,8∙10 5 МПа.

При расчете стержней на растяжение или сжатие, часто возникает необходимость определения величины абсолютной продольной деформации , если известна величина продольной силы, площадь поперечного сечения и материал стержня. Из формулы (9.8) найдем: . Заменим в этом выражении ε его значением из формулы (9.9). В результате получим = . Если использовать формулу нормального напряжения , тополучим окончательную формулу для определения абсолютной продольной деформации:

Произведение модуля продольной упругости на площадь поперечного сечения стержня называется его жесткостью при растяжении или сжатии.

Анализируя формулу (9.10) сделаем существенный вывод: абсолютная продольная деформация стержня при растяжении (сжатия) прямо пропорциональная произведению продольной силы на длину стержня и обратно пропорциональная его жесткости .

Заметим, что формула (9.10) может быть использована в том случае, когда поперечное сечение стержня и продольная сила имеют постоянные значения по всей его длине. В общем случае, когда стержень имеет ступенчато переменную жесткость и загружен по длине несколькими силами, нужно разделить его на участки и определить абсолютные деформации каждого из них по формуле (9.10).

Алгебраическая сумма абсолютных деформаций каждого участка будет равняться абсолютной деформации всего стержня, то есть:

Продольные деформации стержня от действия равномерно распределенной нагрузки вдоль его оси (например, от действия собственного веса), определяется следующей формулой, которую приводим без доказательства:

В случае растяжения или сжатия стержня, кроме продольных деформаций возникают также поперечные деформации, как абсолютные, так и относительные. Обозначим через b размер поперечного сечения стержня до деформации. При растяжении стержня силой F этот размер уменьшится на величину Δb , которая является абсолютной поперечной деформацией стержня. Эта величина имеет отрицательный знак.При сжатии, напротив, абсолютная поперечная деформация будет иметь положительный знак (рис. 9.8).