Камни по знакам зодиака

Нормальный вектор прямой, координаты нормального вектора прямой

Метод координат — весьма эффективный и универсальный способ нахождения любых углов или расстояний между стереометрическими объектами в пространстве. Если Ваш репетитор по математике имеет высокую квалификацию, то он должен это знать. В противном случае я бы советовал для «С» части сменить репетитора. Моя подготовка к ЕГЭ по математике С1-С6 обычно включает разбор основных алгоритмов и формул, описанных ниже.

Угол между прямыми а и b

Углом между прямыми в пространстве называется угол между любыми параллельными им пересекающимися прямыми. Этот угол равен углу между направляющими векторами данных прямых (или дополняет его до 180 град).

Какой алгоритм использует репетитор по математике для поиска угла?

1) Выбираем любые вектора и , имеющие направления прямых а и b (параллельные им).
2) Определяем координаты векторов и по соответствующим координатам их начал и концов (от координат конца вектора нужно отнять координаты начала).
3) Подставляем найденный координаты в формулу:
. Для нахождения самого угла, нужно найти арккосинус полученного результата.

Нормаль к плоскости

Нормалью к плоскости называется любой вектор, перпендикулярный к этой плоскости.
Как найти нормаль? Для поиска координат нормали достаточно узнать координаты любых трех точек M, N и K, лежащих в данной плоскости. По этим координатам находим координаты векторов и и требуем выполнения условий и . Приравнивая скалярные произведение векторов к нулю, составляем систему уравнений с тремя переменными, из которой можно найти координаты нормали.

Замечание репетитора по математике : Совсем не обязательно решать систему полностью, ибо достаточно подобрать хотя бы одну нормаль. Для этого можно подставить вместо какой-нибудь из ее неизвестных координат любое число (например единицу) и решить систему двух уравнений с оставшимися двумя неизвестными. Если она решений не имеет, то это значит, что в семействе нормалей нет той, у которой по выбранной переменной стоит единица. Тогда подставьте единицу вместо другой переменной (другой координаты) и решите новую систему. Если опять промахнетесь, то Ваша нормаль будет иметь единицу по последней координате, а сама она окажется параллельной какой-нибудь координатной плоскости (в таком случае ее легко найти и без системы).

Допустим, что нам заданы прямая и плоскость координатами направляющего вектора и нормали
Угол между прямой и плоскость вычисляется по следующей формуле:

Пусть и — две любые нормали к данным плоскостям. Тогда косинус угла между плоскостями равен модулю косинуса угла между нормалями:

Уравнение плоскости в пространстве

Точки, удовлетворяющие равенству образуют плоскость с нормалью . Коэффициент отвечает за величину отклонения (параллельного сдвига) между двумя плоскостями с одной и той же заданной нормалью . Для того, чтобы написать уравнение плоскости нужно сначала найти ее нормаль (как это описано выше), а затем подставить координаты любой точки плоскости вместе с координатами найденной нормали в уравнение и найти коэффициент .

Можно задавать разными способами (одной точкой и вектором, двумя точками и вектором, тремя точками и др.). Именно с учетом этого уравнение плоскости может иметь различные виды. Также при соблюдении определенных условий плоскости могут быть параллельными, перпендикулярными, пересекающимися и т.д. Об этом и поговорим в данной статье. Мы научимся составлять общее уравнение плоскости и не только.

Нормальный вид уравнения

Допустим, есть пространство R 3 , которое имеет прямоугольную координатную систему XYZ. Зададим вектор α, который будет выпущен из начальной точки О. Через конец вектора α проведем плоскость П, которая будет ему перпендикулярна.

Обозначим на П произвольную точку Q=(х,у,z). Радиус-вектор точки Q подпишем буквой р. При этом длина вектора α равняется р=IαI и Ʋ=(cosα,cosβ,cosγ).

Это единичный вектор, который направлен в сторону, как и вектор α. α, β и γ - это углы, которые образуются между вектором Ʋ и положительными направлениями осей пространства х, у, z соответственно. Проекция какой-либо точки QϵП на вектор Ʋ является постоянной величиной, которая равна р: (р,Ʋ) = р(р≥0).

Указанное уравнение имеет смысл, когда р=0. Единственное, плоскость П в этом случае будет пересекать точку О (α=0), которая является началом координат, и единичный вектор Ʋ, выпущенный из точки О, будет перпендикулярен к П, несмотря на его направление, что означает, что вектор Ʋ определяется с точностью до знака. Предыдущее уравнение является уравнением нашей плоскости П, выраженным в векторной форме. А вот в координатах его вид будет таким:

Р здесь больше или равно 0. Мы нашли уравнение плоскости в пространстве в нормальном виде.

Общее уравнение

Если уравнение в координатах умножим на любое число, которое не равно нулю, получим уравнение, эквивалентное данному, определяющее ту самую плоскость. Оно будет иметь такой вид:

Здесь А, В, С - это числа, одновременно отличные от нуля. Это уравнение именуется как уравнение плоскости общего вида.

Уравнения плоскостей. Частные случаи

Уравнение в общем виде может видоизменяться при наличии дополнительных условий. Рассмотрим некоторые из них.

Предположим, что коэффициент А равен 0. Это означает, что данная плоскость параллельна заданной оси Ох. В этом случае вид уравнения изменится: Ву+Cz+D=0.

Аналогично вид уравнения будет изменяться и при следующих условиях:

  • Во-первых, если В=0, то уравнение изменится на Ах+Cz+D=0, что будет свидетельствовать о параллельности к оси Оу.
  • Во-вторых, если С=0, то уравнение преобразуется в Ах+Ву+D=0, что будет говорить о параллельности к заданной оси Oz.
  • В-третьих, если D=0, уравнение будет выглядеть как Ах+Ву+Cz=0, что будет означать, что плоскость пересекает О (начало координат).
  • В-четвертых, если A=B=0, то уравнение изменится на Cz+D=0, что будет доказывать параллельность к Oxy.
  • В-пятых, если B=C=0, то уравнение станет Ах+D=0, а это означает, что плоскость к Oyz параллельна.
  • В-шестых, если A=C=0, то уравнение приобретет вид Ву+D=0, то есть будет сообщать о параллельности к Oxz.

Вид уравнения в отрезках

В случае когда числа А, В, С, D отличны от нуля, вид уравнения (0) может быть следующим:

х/а + у/b + z/с = 1,

в котором а = -D/А, b = -D/В, с = -D/С.

Получаем в итоге Стоит отметить, что данная плоскость будет пересекать ось Ох в точке с координатами (а,0,0), Оу - (0,b,0), а Oz - (0,0,с).

С учетом уравнения х/а + у/b + z/с = 1 нетрудно визуально представить размещение плоскости относительно заданной координатной системы.

Координаты нормального вектора

Нормальный вектор n к плоскости П имеет координаты, которые являются коэффициентами общего уравнения данной плоскости, то есть n (А,В,С).

Для того чтобы определить координаты нормали n, достаточно знать общее уравнение заданной плоскости.

При использовании уравнения в отрезках, которое имеет вид х/а + у/b + z/с = 1, как и при использовании общего уравнения, можно записать координаты любого нормального вектора заданной плоскости: (1/а + 1/b + 1/с).

Стоит отметить, что нормальный вектор помогает решить разнообразные задачи. К самым распространенным относятся задачи, заключающиеся в доказательстве перпендикулярности или параллельности плоскостей, задачи по нахождению углов между плоскостями или углов между плоскостями и прямыми.

Вид уравнения плоскости согласно координатам точки и нормального вектора

Ненулевой вектор n, перпендикулярный заданной плоскости, называют нормальным (нормалью) для заданной плоскости.

Предположим, что в координатном пространстве (прямоугольной координатной системе) Oxyz заданы:

  • точка Мₒ с координатами (хₒ,уₒ,zₒ);
  • нулевой вектор n=А*i+В*j+С*k.

Нужно составить уравнение плоскости, которая будет проходить через точку Мₒ перпендикулярно нормали n.

В пространстве выберем любую произвольную точку и обозначим ее М (х у,z). Пускай радиус-вектор всякой точки М (х,у,z) будет r=х*i+у*j+z*k, а радиус-вектор точки Мₒ (хₒ,уₒ,zₒ) - rₒ=хₒ*i+уₒ*j+zₒ*k. Точка М будет принадлежать заданной плоскости, если вектор МₒМ будет перпендикулярен вектору n. Запишем условие ортогональности при помощи скалярного произведения:

[МₒМ, n] = 0.

Поскольку МₒМ = r-rₒ, векторное уравнение плоскости выглядеть будет так:

Данное уравнение может иметь и другую форму. Для этого используются свойства скалярного произведения, а преобразовывается левая сторона уравнения. = - . Если обозначить как с, то получится следующее уравнение: - с = 0 или = с, которое выражает постоянство проекций на нормальный вектор радиус-векторов заданных точек, которые принадлежат плоскости.

Теперь можно получить координатный вид записи векторного уравнения нашей плоскости = 0. Поскольку r-rₒ = (х-хₒ)*i + (у-уₒ)*j + (z-zₒ)*k, а n = А*i+В*j+С*k, мы имеем:

Выходит, у нас образовывается уравнение плоскости, проходящей через точку перпендикулярно нормали n:

А*(х- хₒ)+В*(у- уₒ)С*(z-zₒ)=0.

Вид уравнения плоскости согласно координатам двух точек и вектора, коллинеарного плоскости

Зададим две произвольные точки М′ (х′,у′,z′) и М″ (х″,у″,z″), а также вектор а (а′,а″,а‴).

Теперь мы сможем составить уравнение заданной плоскости, которая будет проходить через имеющиеся точки М′ и М″, а также всякую точку М с координатами (х,у,z) параллельно заданному вектору а.

При этом векторы М′М={х-х′;у-у′;z-z′} и М″М={х″-х′;у″-у′;z″-z′} должны быть компланарными с вектором а=(а′,а″,а‴), а это значит, что (М′М, М″М, а)=0.

Итак, наше уравнение плоскости в пространстве будет выглядеть так:

Вид уравнения плоскости, пересекающей три точки

Допустим, у нас есть три точки: (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴), которые не принадлежат одной прямой. Необходимо написать уравнение плоскости, проходящей через заданные три точки. Теория геометрии утверждает, что такого рода плоскость действительно существует, вот только она единственная и неповторимая. Поскольку эта плоскость пересекает точку (х′,у′,z′), вид ее уравнения будет следующим:

Здесь А, В, С отличные от нуля одновременно. Также заданная плоскость пересекает еще две точки: (х″,у″,z″) и (х‴,у‴,z‴). В связи с этим должны выполняться такого рода условия:

Сейчас мы можем составить однородную систему с неизвестными u, v, w:

В нашем случае х,у или z выступает произвольной точкой, которая удовлетворяет уравнение (1). Учитывая уравнение (1) и систему из уравнений (2) и (3), системе уравнений, указанной на рисунке выше, удовлетворяет вектор N (А,В,С), который является нетривиальным. Именно потому определитель данной системы равняется нулю.

Уравнение (1), которое у нас получилось, это и есть уравнение плоскости. Через 3 точки она точно проходит, и это легко проверить. Для этого нужно разложить наш определитель по элементам, находящимся в первой строке. Из существующих свойств определителя вытекает, что наша плоскость одновременно пересекает три изначально заданные точки (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴). То есть мы решили поставленную перед нами задачу.

Двухгранный угол между плоскостями

Двухгранный угол представляет собой пространственную геометрическую фигуру, образованную двумя полуплоскостями, которые исходят из одной прямой. Иными словами, это часть пространства, которая ограничивается данными полуплоскостями.

Допустим, у нас имеются две плоскости со следующими уравнениями:

Нам известно, что векторы N=(А,В,С) и N¹=(А¹,В¹,С¹) перпендикулярны согласно заданным плоскостям. В связи с этим угол φ меж векторами N и N¹ равняется углу (двухгранному), который находится между этими плоскостями. Скалярное произведение имеет вид:

NN¹=|N||N¹|cos φ,

именно потому

cosφ= NN¹/|N||N¹|=(АА¹+ВВ¹+СС¹)/((√(А²+В²+С²))*(√(А¹)²+(В¹)²+(С¹)²)).

Достаточно учесть, что 0≤φ≤π.

На самом деле две плоскости, которые пересекаются, образуют два угла (двухгранных): φ 1 и φ 2 . Сумма их равна π (φ 1 + φ 2 = π). Что касается их косинусов, то их абсолютные величины равны, но различаются они знаками, то есть cos φ 1 =-cos φ 2 . Если в уравнении (0) заменить А, В и С на числа -А, -В и -С соответственно, то уравнение, которое мы получим, будет определять эту же плоскость, единственное, угол φ в уравнении cos φ= NN 1 /|N||N 1 | будет заменен на π-φ.

Уравнение перпендикулярной плоскости

Перпендикулярными называются плоскости, между которыми угол равен 90 градусов. Используя материал, изложенный выше, мы можем найти уравнение плоскости, перпендикулярной другой. Допустим, у нас имеются две плоскости: Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D=0. Мы можем утверждать, что перпендикулярными они будут, если cosφ=0. Это значит, что NN¹=АА¹+ВВ¹+СС¹=0.

Уравнение параллельной плоскости

Параллельными называются две плоскости, которые не содержат общих точек.

Условие (их уравнения те же, что и в предыдущем пункте) заключается в том, что векторы N и N¹, которые к ним перпендикулярны, коллинеарные. А это значит, что выполняются следующие условия пропорциональности:

А/А¹=В/В¹=С/С¹.

Если условия пропорциональности являются расширенными - А/А¹=В/В¹=С/С¹=DD¹,

это свидетельствует о том, что данные плоскости совпадают. А это значит, что уравнения Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D¹=0 описывают одну плоскость.

Расстояние до плоскости от точки

Допустим, у нас есть плоскость П, которая задана уравнением (0). Необходимо найти до нее расстояние от точки с координатами (хₒ,уₒ,zₒ)=Qₒ. Чтобы это сделать, нужно привести уравнение плоскости П в нормальный вид:

(ρ,v)=р (р≥0).

В данном случае ρ (х,у,z) является радиус-вектором нашей точки Q, расположенной на П, р - это длина перпендикуляра П, который был выпущен из нулевой точки, v - это единичный вектор, который расположен в направлении а.

Разница ρ-ρº радиус-вектора какой-нибудь точки Q=(х,у,z), принадлежащий П, а также радиус-вектора заданной точки Q 0 =(хₒ,уₒ,zₒ) является таким вектором, абсолютная величина проекции которого на v равняется расстоянию d, которое нужно найти от Q 0 =(хₒ,уₒ,zₒ) до П:

D=|(ρ-ρ 0 ,v)|, но

(ρ-ρ 0 ,v)= (ρ,v)-(ρ 0 ,v) =р-(ρ 0 ,v).

Вот и получается,

d=|(ρ 0 ,v)-р|.

Таким образом, мы найдем абсолютное значение полученного выражения, то есть искомое d.

Используя язык параметров, получаем очевидное:

d=|Ахₒ+Вуₒ+Czₒ|/√(А²+В²+С²).

Если заданная точка Q 0 находится по другую сторону от плоскости П, как и начало координат, то между вектором ρ-ρ 0 и v находится следовательно:

d=-(ρ-ρ 0 ,v)=(ρ 0 ,v)-р>0.

В случае когда точка Q 0 совместно с началом координат располагается по одну и ту же сторону от П, то создаваемый угол острый, то есть:

d=(ρ-ρ 0 ,v)=р - (ρ 0 , v)>0.

В итоге получается, что в первом случае (ρ 0 ,v)>р, во втором (ρ 0 ,v)<р.

Касательная плоскость и ее уравнение

Касающаяся плоскость к поверхности в точке касания Мº - это плоскость, содержащая все возможные касательные к кривым, проведенным через эту точку на поверхности.

При таком виде уравнения поверхности F(х,у,z)=0 уравнение касательной плоскости в касательной точке Мº(хº,уº,zº) будет выглядеть так:

F х (хº,уº,zº)(х- хº)+ F х (хº, уº, zº)(у- уº)+ F х (хº, уº,zº)(z-zº)=0.

Если задать поверхность в явной форме z=f (х,у), то касательная плоскость будет описана уравнением:

z-zº =f(хº, уº)(х- хº)+f(хº, уº)(у- уº).

Пересечение двух плоскостей

В расположена система координат (прямоугольная) Oxyz, даны две плоскости П′ и П″, которые пересекаются и не совпадают. Поскольку любая плоскость, находящаяся в прямоугольной координатной системе, определяется общим уравнением, будем полагать, что П′ и П″ задаются уравнениями А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. В таком случае имеем нормаль n′ (А′,В′,С′) плоскости П′ и нормаль n″ (А″,В″,С″) плоскости П″. Поскольку наши плоскости не параллельны и не совпадают, то эти векторы являются не коллинеарными. Используя язык математики, мы данное условие можем записать так: n′≠ n″ ↔ (А′,В′,С′) ≠ (λ*А″,λ*В″,λ*С″), λϵR. Пускай прямая, которая лежит на пересечении П′ и П″, будет обозначаться буквой а, в этом случае а = П′ ∩ П″.

а - это прямая, состоящая из множества всех точек (общих) плоскостей П′ и П″. Это значит, что координаты любой точки, принадлежащей прямой а, должны одновременно удовлетворять уравнения А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. Значит, координаты точки будут частным решением следующей системы уравнений:

В итоге получается, что решение (общее) этой системы уравнений будет определять координаты каждой из точек прямой, которая будет выступать точкой пересечения П′ и П″, и определять прямую а в координатной системе Oxyz (прямоугольной) в пространстве.

Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

На первый взгляд, выглядит угрожающе, но достаточно немного практики - и все будет работать великолепно.

Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат - точку (0; 0; 0) - то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;

Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;

Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

Решение. Используя третью формулу, получаем n = (7; − 2; 4) - вот и все!

Вычисление координат векторов

А что, если в задаче нет векторов - есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек - начала и конца вектора - можно вычислить координаты самого вектора.

Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

Рассмотрим вектор AB: его начало находится в точке A, а конец - в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

Аналогично, начало вектора AC - все та же точка A, зато конец - точка C. Поэтому имеем:
AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).

Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

Вычисление направляющих векторов для прямых

Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую...

Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой:

Зачем нужен этот вектор? Дело в том, что угол между двумя прямыми - это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведены прямые AC и BD 1 . Найдите координаты направляющих векторов этих прямых.

Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA 1 соответственно. Единичный отрезок равен AB = 1.

Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) - это и есть направляющий вектор.

Теперь разберемся с прямой BD 1 . На ней также есть две точки: B = (1; 0; 0) и D 1 = (0; 1; 1). Получаем направляющий вектор BD 1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

Ответ: AC = (1; 1; 0); BD 1 = (− 1; 1; 1)

Задача. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, проведены прямые AB 1 и AC 1 . Найдите координаты направляющих векторов этих прямых.

Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA 1 , ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

Для начала разберемся с прямой AB 1 . Тут все просто: у нас есть точки A = (0; 0; 0) и B 1 = (1; 0; 1). Получаем направляющий вектор AB 1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

Теперь найдем направляющий вектор для AC 1 . Все то же самое - единственное отличие в том, что у точки C 1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

Ответ: AB 1 = (1; 0; 1);

Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца. К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

Вычисление нормальных векторов для плоскостей

Нормальные векторы - это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости - это вектор, перпендикулярный данной плоскости.

Другими словами, нормаль - это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение - правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом - хоть прямой, хоть вектором.

Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D - некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

Итак, плоскость тоже можно успешно заменить вектором - той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно - и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение A 1 BC 1 . Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A 1 , B и C 1 , то координаты этих точек обращают уравнение плоскости в верное числовое равенство.


A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;

Аналогично, для точек B = (1; 0; 0) и C 1 = (1; 1; 1) получим уравнения:
A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;

Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B:
B = − 1 − A − C = − 1 + 1 + 1 = 1.

Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение AA 1 C 1 C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A 1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

Подставим вместо x, y и z координаты точки A 1 = (0; 0; 1). Имеем:
A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;

Аналогично, для точки C = (1; 1; 0) получим уравнение:
A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;

Положим B = 1. Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 - без ущерба для общности решения и правильности ответа.

Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

Итак, пусть отрезок задан своими концами - точками A = (x a ; y a ; z a) и B = (x b ; y b ; z b). Тогда координаты середины отрезка - обозначим ее точкой H - можно найти по формуле:

Другими словами, координаты середины отрезка - это среднее арифметическое координат его концов.

Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Точка K - середина ребра A 1 B 1 . Найдите координаты этой точки.

Поскольку точка K - середина отрезка A 1 B 1 , ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A 1 = (0; 0; 1) и B 1 = (1; 0; 1). Теперь найдем координаты точки K:

Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A 1 B 1 C 1 D 1 .

Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A 1 L = C 1 L, т.е. точка L - это середина отрезка A 1 C 1 . Но A 1 = (0; 0; 1), C 1 = (1; 1; 1), поэтому имеем:

Ответ : L = (0,5; 0,5; 1)

Вектор нормали к поверхности в точке совпадает с нормалью к касательной плоскости в этой точке.

Вектор нормали к поверхности в данной точке - это единичный вектор , приложенный к данной точке и параллельный направлению нормали. Для каждой точки гладкой поверхности можно задать два нормальных вектора, отличающихся направлением. Если на поверхности можно задать непрерывное поле нормальных векторов, то говорят, что это поле задает ориентацию поверхности (то есть выделяет одну из сторон). Если этого сделать нельзя, поверхность называется неориентируемой .

Аналогично определяется вектор нормали к кривой в данной точке. Очевидно, что к кривой к данной точке можно приложить бесконечно много не параллельных векторов нормали (аналогично тому, как к поверхности можно приложить бесконечно много не параллельных касательных векторов). Среди них выбирают два, ортогональных друг к другу: вектор главной нормали, и вектор бинормали .

См. также

Литература

  • Погорелов А. И. Дифференциальная геометрия (6-е издание). М.: Наука, 1974 (djvu)

Wikimedia Foundation . 2010 .

Синонимы :
  • Битва при Треббии (1799)
  • Граммонит

Смотреть что такое "Нормаль" в других словарях:

    НОРМАЛЬ - (фр.). Перпендикуляр к касательной, проведенной к кривой, в данной точке, нормаль которой отыскивается. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НОРМАЛЬ перпендикулярная линия к касательной, проведенной к… … Словарь иностранных слов русского языка

    нормаль - и, ж. normale f. <лат. normalis. 1. мат. Перпендикуляр к касательной прямой или плоскости, проходящий через точку касания. БАС 1. Нормальная линия, или нормаль. В аналитической геометрии так называется прямая линия, перпендикулярная к… … Исторический словарь галлицизмов русского языка

    нормаль - перпендикуляр. Ant. параллель Словарь русских синонимов. нормаль сущ., кол во синонимов: 3 бинормаль (1) … Словарь синонимов

    НОРМАЛЬ - (от лат. normalis прямой) к кривой линии (поверхности) в данной ее точке прямая, проходящая через эту точку и перпендикулярная к касательной прямой (касательной плоскости) в этой точке …

    НОРМАЛЬ - устаревшее название стандарта … Большой Энциклопедический словарь

    НОРМАЛЬ - НОРМАЛЬ, нормали, жен. 1. Перпендикуляр к касательной прямой или плоскости, проходящий через точку касания (мат.). 2. Деталь установленного заводом образца (тех.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    нормаль - нормальный вертикальный стандартный реальный — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы нормальныйвертикальныйстандартныйреальный EN normal … Справочник технического переводчика

    нормаль - и; ж. [от лат. normalis прямолинейный] 1. Матем. Перпендикуляр к касательной прямой или плоскости, проходящей через точку касания. 2. Техн. Деталь установленного образца. * * * нормаль I (от лат. normalis прямой) к кривой линии (поверхности) в… … Энциклопедический словарь

    НОРМАЛЬ - (франц. normal нормаль, норма, от лат. normalis прямой) 1) Н. в стандарт и з а ц и и устаревшее назв. стандарта. 2) Н. в математике Н. к кривой (поверхности) в данной точке наз. прямую, проходящую через эту точку и перпендикулярную к касат.… … Большой энциклопедический политехнический словарь

    нормаль - normalė statusas T sritis fizika atitikmenys: angl. normal vok. Normale, f rus. нормаль, f pranc. normale, f … Fizikos terminų žodynas

Книги

  • Геометрия алгебраических уравнений, разрешимых в радикалах: С приложениями в численных методах и вычислительной геометрии , Кутищев Г.П.. В этой книге, на теоретическом уровне несколько выше школьного, очень подробно рассмотрены алгебраические уравнения, допускающие решение в элементарных операциях, или решение в радикалах. Эти…

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Yandex.RTB R-A-339285-1

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.

Определение 1

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость О х у, то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у, перпендикулярной О х. Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .

Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой

При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.

Пример 1

Задана прямая вида 2 x + 7 y - 4 = 0 _, найти координаты нормального вектора.

Решение

По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты, которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .

Ответ: 2 , 7 .

Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.

Пример 2

Указать нормальный вектор для заданной прямой y - 3 = 0 .

Решение

По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y - 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .

Ответ: 0 , 1 .

Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.

Пример 3

Найти координаты нормального вектора, если дано уравнение прямой x 1 3 - y = 1 .

Решение

Для начала необходимо перейти от уравнения в отрезках x 1 3 - y = 1 к уравнению общего вида. Тогда получим, что x 1 3 - y = 1 ⇔ 3 · x - 1 · y - 1 = 0 .

Отсюда видно, что координаты нормального вектора имеют значение 3 , - 1 .

Ответ: 3 , - 1 .

Если прямая определена каноническим уравнением прямой на плоскости x - x 1 a x = y - y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = (a x , a y) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .

Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0

Для решения можно выбирать любой удобный способ.

Пример 4

Найти нормальный вектор заданной прямой x - 2 7 = y + 3 - 2 .

Решение

Из прямой x - 2 7 = y + 3 - 2 понятно, что направляющий вектор будет иметь координаты a → = (7 , - 2) . Нормальный вектор n → = (n x , n y) заданной прямой является перпендикулярным a → = (7 , - 2) .

Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = (7 , - 2) и n → = (n x , n y) запишем a → , n → = 7 · n x - 2 · n y = 0 .

Значение n x – произвольное, следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 - 2 · n y = 0 ⇔ n y = 7 2 .

Значит, нормальный вектор имеет координаты 1 , 7 2 .

Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем

x - 2 7 = y + 3 - 2 ⇔ 7 · (y + 3) = - 2 · (x - 2) ⇔ 2 x + 7 y - 4 + 7 3 = 0

Полученный результат координат нормального вектора равен 2 , 7 .

Ответ: 2 , 7 или 1 , 7 2 .

Пример 5

Указать координаты нормального вектора прямой x = 1 y = 2 - 3 · λ .

Решение

Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:

x = 1 y = 2 - 3 · λ ⇔ x = 1 + 0 · λ y = 2 - 3 · λ ⇔ λ = x - 1 0 λ = y - 2 - 3 ⇔ x - 1 0 = y - 2 - 3 ⇔ ⇔ - 3 · (x - 1) = 0 · (y - 2) ⇔ - 3 · x + 0 · y + 3 = 0

Отсюда видно, что координаты нормального вектора равны - 3 , 0 .

Ответ: - 3 , 0 .

Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .

Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) .

Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x - x 1 a x = y - y 1 a y = z - z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = (a x , a y , a z) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = (a x , a y , a z) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter