Талисманы и обереги

Эфир и безтопливный мотор алексеенко. Электрогравитация это просто

Изучая диск Фарадея и т.н. "парадокс Фарадея", провел несколько простых опытов и сделал несколько интересных выводов. В первую очередь о том, на что следует обращать больше всего внимания для того, чтобы лучше понять процессы происходящие в этой (и подобных) униполярной машине.

Понимание принципа работы диска Фарадея помогает понять также то, как работают вообще все трансформаторы, катушки, генераторы, электродвигатели (в т.ч. униполярный генератор и униполярный двигатель) и т.п.

В заметке рисунки и подробное видео с разными опытами, иллюстрирующими все выводы без формул и подсчетов, "на пальцах".

Все нижеизложенное - попытка осмысления без претензий на академическую достоверность.

Направление силовых линий магнитного поля

Главный вывод который я для себя сделал: первое, на что стоит всегда обращать внимание в подобных системах - это геометрия магнитного поля , направление и конфигурация силовых линий.

Только геометрия силовых линий магнитного поля, их направление и конфигурация могут внести определенную ясность в понимание процессов, происходящих в униполярном генераторе или униполярном двигателе, диске Фарадея, а также любом трансформаторе, катушке, электродвигателе, генераторе и т.п.

Я для себя распределил степень важности так - 10% физики, 90% геометрии (магнитного поля) для понимания происходящего в этих системах.

Более подробно все описано в видео (см. ниже).

Надо понимать что диск Фарадея и внешняя цепь со скользящими контактами так или иначе образуют хорошо известную со школьных времен рамку - ее образует участок диска от его центра к месту соединения со скользящим контактом у его края, а также вся внешняя цепь (подходящие к контактам проводники).

Направление силы Лоренца, Ампера

Сила Ампера - частный случай силы Лоренца (см. Википедию).

Ниже на двух картинках показана сила Лоренца действующая на положительные заряды во всей цепи ("рамке") в поле магнита типа "бублик" для случая когда внешняя цепь жестко соединена с медным диском (т.е. когда скользящие контакты отсутствуют, и внешняя цепь напрямую припаяна к диску).

1 рис . - для случая когда вся цепь вращается внешним механическим усилием ("генератор").
2 рис . - для случая, когда через цепь подается постоянный ток от внешнего источника ("двигатель").

Нажмите на один из рисунков, чтобы увеличить.

Сила Лоренца проявляется (генерируется ток) только в участках цепи, ДВИГАЮЩИХСЯ в магнитном поле

Униполярный генератор

Итак, поскольку сила Лоренца, действующая на заряженные частицы диска Фарадея или униполярного генератора, будет действовать противоположно на разных участках цепи и диска, то для получения тока из этой машины следует приводить в движение (вращать) только те участки цепи (по возможности), направление силы Лоренца в которых будет совпадать. Остальные участки должны быть либо неподвижны, либо исключены из цепи, либо вращаться в противоположную сторону .

Вращение магнита не изменяет однородность магнитного поля вокруг оси вращения (см. последний раздел), поэтому стоит магнит или вращается - не играет роли (хотя идеальных магнитов не бывает, и неоднородность поля вокруг оси намагниченности, вызванная недостаточным качеством магнита , тоже оказывает некоторое влияние на результат).

Здесь важную роль играет то, какая часть всей цепи (включая подводящие провода и контакты) вращается, а какая неподвижна (т.к. только в движущейся части возникает сила Лоренца). А главное - в какой части магнитного поля находится вращающаяся часть, и из какого участка диска производится съем тока.

Например, если диск будет выступать далеко за пределы магнита, то в выступающей за край магнита части диска можно снять ток направления противоположного току который можно снять в части диска расположенной непосредственно над магнитом.

Униполярный двигатель

Все вышесказанное о генераторе справедливо и для режима "двигатель".

Подавать ток надо по возможности в те части диска, в которых сила Лоренца будет направлена в одну сторону. Именно эти участки надо освободить, предоставив возможность им свободно вращаться и "разорвать" цепь в соответствующих местах, поставив скользящие контакты (см. рисунки далее).

Остальные участки надо по возможности либо исключить, либо минимизировать их влияние.

Видео - опыты и выводы

Время разных этапов этого видео:

3 мин 34 сек - первые опыты

7 мин 08 сек - на что обращать главное внимание и продолжение опытов

16 мин 43 сек - ключевое объяснение

22 мин 53 сек - ГЛАВНЫЙ ОПЫТ

28 мин 51 сек - 2 часть, интересные наблюдения и еще опыты

37 мин 17 сек - ошибочный вывод одного из опытов

41 мин 01 сек - о парадоксе Фарадея

Что от чего отталкивается?

Мы с товарищем-электронщиком долго обсуждали эту тему и он высказал мысль построенную вокруг слова "отталкивается ".
Мысль, с которой я согласен - если что-то начинает движение, то оно от чего-то должно отталкиваться. Если что-то движется, то оно движется относительно чего-то.

Упрощенно говоря, можно сказать, что часть проводника (внешняя цепь или диск) отталкивается от магнита! Соответственно на магнит (через поле) действуют силы отталкивания. Иначе вся картина рушится и теряет логику. Про вращение магнита - см. раздел ниже.

На рисунках (можно кликнуть для увеличения) - варианты для режима "двигатель".
Для режима "генератор" работают те же принципы.

Здесь действие-противодействие происходит между двумя главными "участниками":

  • магнит (магнитное поле)
  • разные участки проводника (заряженные частицы проводника)

Соответственно, когда диск вращается, а магнит неподвижен , то действие-противодействие происходит между магнитом и частью диска .

А когда магнит вращается вместе с диском, то действие-противодействие происходит между магнитом и внешней частью цепи (зафиксированными подводящими проводниками). Дело в том, что вращение магнита относительно внешнего участка цепи - это тоже самое, что вращение внешнего участка цепи относительно неподвижного магнита (но в противоположную сторону). В этом случае медный диск в процессе "отталкивания" почти не участвует.

Выходит так, что в отличие от заряженных частиц проводника (которые могут двигаться внутри него), магнитное поле жестко связано с магнитом. В т.ч. вдоль окружности вокруг оси намагниченности.
И еще один вывод: сила притягивающая два постоянных магнита - не какая-то загадочная сила перпендикулярная силе Лоренца, а это сила Лоренца и есть. Все дело во "вращении" электронов и той самой "геометрии ". Но это уже другая история...

Вращение "голого" магнита

В конце видео есть забавный опыт, и вывод о том, почему часть электрической цепи можно заставить вращаться, а заставить вращаться магнит "бублик" вокруг оси намагниченности - не получается (при неподвижной электрической цепи постоянного тока).

Проводник можно разорвать в местах противоположного направления силы Лоренца, а магнит разорвать нельзя

Дело в том что магнит и весь проводник (внешняя цепь и сам диск) образуют связанную пару - две взаимодействующие системы , каждая из которых замкнута внутри себя . В случае с проводником - замкнута электрическая цепь , в случае с магнитом - "замкнуты" силовые линии магнитного поля .

При этом, в электрической цепи проводник можно физически разорвать , не нарушая самой цепи (поставив диск и скользящие контакты ), в тех местах, где сила Лоренца "разворачивается" в обратном направлении, "отпустив" разные участки электрической цепи двигаться (вращаться) каждый в свою, противоположную друг другу сторону, а разорвать "цепь" силовых линий магнитного поля или магнита, так чтобы разные участки магнитного поля "не мешали" друг другу - видимо невозможно (?). Никаких подобий "скользящих контактов" для магнитного поля или магнита кажется еще не придумали.

Поэтому и возникает проблема с вращением магнита - его магнитное поле представляет собой цельную систему, которая всегда замкнута в себе и неразрывна в теле магнита. В ней противоположные силы на участках, где магнитное поле разнонаправленно, взаимно компенсируются, оставляя магнит неподвижным.

При этом, работа силы Лоренца, Ампера в неподвижно зафиксированном проводнике в поле магнита, уходит видимо не только на нагрев проводника, но и на искажение силовых линий магнитного поля магнита.

КСТАТИ! Интересно было бы провести опыт, в котором через неподвижный проводник, находящийся в поле магнита, пропустить огромный ток , и посмотреть - как будет реагировать магнит. Нагреется ли магнит, размагнитится ли, или может быть он просто разломается на куски (и тогда интересно - в каких местах?).


Все вышеизложенное - попытка осмысления без претензий на академическую достоверность.

Вопросы

Что осталось не до конца ясным и требует проверки:

1. Можно ли все-таки заставить вращаться магнит отдельно от диска?

Если дать возможность и диску, и магниту, свободно вращаться независимо друг от друга , и подать ток на диск через скользящие контакты, то будут ли и диск, и магнит вращаться? И если да, то в какую сторону будет вращаться магнит? Для эксперимента нужен большой неодимовый магнит - его у меня пока нет. С обычным магнитом не хватает силы магнитного поля.

2. Вращение разных частей диска в разные стороны

Если сделать свободно вращающимися независимо друг от друга и от неподвижного магнита - центральную часть диска (над "дыркой бублика" магнита), среднюю часть диска, а так же часть диска выступающую за край магнита, и подать ток через скользящие контакты (в т.ч. скользящие контакты между этими вращающимися частями диска) - будут ли центральная и крайняя часть диска вращаться в одну сторону, а средняя - в противоположную?

3. Сила Лоренца внутри магнита

Действует ли сила Лоренца на частицы внутри магнита, магнитное поле которого искажается внешними силами?


Сегодня для вас очередной эксперимент, который, надеемся, заставит вас задуматься. Это динамическая левитация в магнитном поле. В этом случае один кольцевой магнит располагается над таким-же, но большим по размеру. Продаются магниты дешевле в этом китайском магазине .

Это типичный левитрон, который уже был ранее показан (материал ). Большой магнит и маленький. Они направлены друг к другу одноименными полюсами, соответственно отталкиваются, за счет этого и происходит левитация. Присутствует, естественно, магнитная впадина, или потенциальная яма, в которую верхний магнитик садится. Другой момент, это то, что он вращается за счет гироскопического момента, он какое-то время не переворачивается, пока у него скорость не снизится.

В чем замысел эксперимента?

Если мы вращаем волчок только для того, чтобы он не перевернулся, возникает вопрос. А зачем? Если можно взять какую-то спицу, например, деревянную. К ней жестко прикрепить верхний магнитик, а снизу повесить грузчик расположить эту конструкцию над вторым. Таким образом он тоже по идее должен висеть, а нижний грузик не будет давать ему переворачиваться.

Нужно будет очень точно выставить баланс массы этого волчка. Получилось бы магнитная левитация без затрат энергии.

Как это устроено?

Вот кольцевой магнит, в него жестко вставлена деревянная спица. Далее пластинка из пластика с отверстием для стабилизации спицы. И на конце – грузик. Кусочек пластилина для более удобной регулировки подбора массы. Можно откусывать по чуть-чуть и подобрать такую массу всей этой конструкции, чтобы маленький кольцевой магнитик попадал четко в зону левитации.

Давайте его аккуратно поместим внутрь нижнего магнита, он как бы зависает. Кусочком оргстекла можно попытаться стабилизировать его положение. Но вот стабилизации по горизонтали это ему почему-то не придает.

Если убрать пластинку и вернуть все обратно, то магнитик вместе с осью, на которой он покоится, будет сваливаться вбок. Когда он вращается, он почему-то в магнитной яме стабилизируется. Хотя, обратите внимание, при этом вращении он двигается со стороны в сторону, наверное, миллиметров на пять. Точно также он колеблется и в вертикальном положении сверху вниз. Создается такое впечатление, что это магнитная яма имеет определенный люфт. Стоит верхнему магниту попасть в яму, оне его захватывает и удерживает. Остается лишь гироскопическим моментом добиться того, чтобы этот магнит не переворачивался.

В чем была суть эксперимента?

Проверить, если мы сделаем показанную конструкцию с осью, она фактически она выполняет тоже самое, не давая магниту перевернуться. Она выводит его в зону потенциальной ямы, мы подбираем вес этой конструкции. Магнитик находится в яме, но, попадая в нее, почему-то не стабилизируется по горизонтали. Все равно это конструкция сваливается в сторону.

Проведя этот эксперимент, возникает главный вопрос: почему же такая несправедливость, когда этот магнит как волчок вращается, он зависает в потенциальной яме, все отлично стабилизируется и захватывается; а когда создаются те же условия, все тоже самое, то есть масса и высота, яма как будто пропадает. Он просто выталкивается.

Почему нет стабилизации верхнего магнита?

Предположительно, это происходит потому, что невозможно сделать магниты идеальными. Как по форме, так и по намагниченности. Поле имеет какие-то изьяны, перекосы и поэтому в нем не могут два наших магнита найти равновесное состояние. Они обязательно будут соскальзывать, поскольку между ними нет трения. А при вращении левитрона поля как бы сглаживаются, верхняя часть конструкции не успевает при вращении сойти в сторону.

Это понятно, но что мотивировало автора видео сделать этот эксперимент, это наличие потенциальной ямы. Была надежда, что у этой ямы есть какой-то запас прочности для удержания конструкции. Но, увы, этого почему-то не произошло. Хотелось бы почитать ваше мнение об этой загадке.

Есть еще материал на эту тему.

Проблема изобретения вечного двигателя начала волновать конструкторов и механиков довольно давно. Наличие такого устройства в масштабных размерах могло бы очень сильно изменить жизнь во всех ее проявлениях и ускорить развитие большинства областей науки и промышленности.

Из истории изобретения магнитного двигателя

История первого появления магнитного двигателя начинается в 1969 году. Именно в этом году бал изобретен и сконструирован первый прототип этого механизма, который состоял из деревянного корпуса и нескольких магнитов.

Сила этих магнитов была настолько слаба, что ее энергии хватало лишь на вращение ротора. Этот магнитный двигатель своими руками создал конструктор Майкл Брэди. Большую часть своей жизни изобретатель посвятил конструированию двигателей. И в 90-х годах прошлого столетия он создал абсолютно новую модель, на которую и получил патент.

Первые шаги

Взяв за основу магнитный двигатель, своими руками и с участием помощника Брэди сконструировал электрогенератор, который имел небольшую мощность в 6 кВт. Источником энергии являлся силовой мотор, который работал исключительно на постоянных магнитах.

Но в этой модели был свой недостаток - обороты и мощность двигателя оставались неизменно постоянными.

Эта возникшая трудность подтолкнула ученых к созданию модели устройства, в котором можно было изменять силу момента вращения и скорость вращения ротора. Для этого понадобилось наряду с постоянными магнитами добавить в конструкцию магнитные катушки для усиления магнитного поля.

Так возможно ли сейчас, когда наука шагнула далеко вперед, и нас окружает большое количество уникальных по своей природе вещей, сконструировать двигатель на постоянных магнитах своими руками? Такой двигатель можно сконструировать, но КПД его будет довольно низким, а само изобретение будет выглядеть, скорее, как демонстрационная модель, нежели серьезный агрегат.

Что понадобится?

Для создания упрощенного прототипа магнитного двигателя понадобятся неодимовые магниты, пластиковый или другой диэлектрический обод, вал с наименьшим сопротивлением вращению, некоторые инструменты и прочие мелочи, которые всегда могут быть под рукой.

Процесс сборки

Начинать собирать магнитный двигатель своими руками следует с прочного закрепления неодимовых магнитов по всей окружности имеющегося обода. Магниты должны быть плоские и иметь максимальную площадь. Закрепить магниты можно при помощи клея, располагаться они должны максимально плотно друг к другу, чтобы создать непрерывное единое магнитное поле. Причем все магниты должны быть обращены наружу одинаковым полюсом.

Обод с прочно зафиксированными на нем магнитами стоит закрепить на горизонтальной плоскости, например, на листе фанеры или доске. В центре данной конструкции нужно расположить вращающийся вал, высотой немного больше, чем высота обода.

От верхней части вала должна отходить планка или трубка из непроводникового материала, длиной немного больше радиуса обода, на котором также будет зафиксирован магнит параллельно магнитному кольцу. Причем это магнит должен располагаться таким же полюсом к остальным магнитам, что и закрепленные на ободе.

Таким образом, придав небольшое ускорение магниту, располагающемуся на валу, можно наблюдать его вращение вокруг оси. При этом вращение будет постоянным, если вокруг обода образованно непрерывное магнитное поле. Такое вращение достигается путем взаимодействия одинаковых по знаку магнитных полей, а именно их отталкивания. Магнитное поле, созданное вокруг обода, является более сильным и старается вытолкнуть одиночный магнит за свои пределы, что и вызывает его вращение.

Даже если использовать более сильные магниты, то потенциал данного устройства будет очень малым и никакой практической функции нести не может. Если же попытаться воссоздать его в крупном масштабе, то создаваемое магнитное поле будет настолько мощным, что находиться в зоне его действия человеку будет очень опасно. Помимо этого, силы огромных магнитов может быть достаточно, чтобы возникли неразрешимые проблемы при их транспортировке, связанные с притяжением техники, рельс и прочих металлических предметов.

В будущее с вечным двигателем

Возможность изобретения вечного двигателя неоднократно опровергалась на протяжении многих десятков лет многими физиками, конструкторами и другими учеными. Невозможность его создания доказывалась теоретически и стимулировала возникновение различных законов и постулатов.

Надежда всегда остается, ведь в мире существует огромное количество необъяснимых явлений, секрет которых может послужить новым толчком в развитии науки. Ведь имея возможность сконструировать вечный двигатель и рационально его использовать, можно забыть раз и навсегда о большом количестве проблем, которые поглощают цивилизации в глобальных масштабах.

Можно раз и навсегда позабыть о проблеме добычи топливных ресурсов и, как следствие, об экологической проблеме, возникающей в результате их использования. Создание вечного магнитного двигателя позволит сохранить леса, водные ресурсы и больше никогда не возвращаться к вопросам, связанным с энергетической нестабильностью. Имена изобретателей этого шедевра могут вознестись на пик известности и почитания и быть вписанными в историю на многие века. Ведь эти люди будут достойны наивысших богатств, наград и почестей за свои достижения.

Использование: в качестве привода вращения. В магнитном вращающемся устройстве, на роторе, закрепленном на вращающемся валу, расположено несколько постоянных магнитов по направлению вращения таким образом, что одинаковые магнитные полюса обращены наружу. Таким же образом расположены на роторе балансиры для уравновешивания этого ротора. Каждый из постоянных магнитов размещен с наклоном по отношению к линии радиального направления ротора. На внешней периферии ротора электромагнит расположен навстречу ротору, и прерывисто возбуждается согласно вращению ротора. В заявленном магнитном вращающемся устройстве с постоянных магнитов можно эффективно получать энергию вращения. Это становится возможным благодаря уменьшению, насколько это возможно, подаваемого к электромагнитам тока так, что только потребное количество электроэнергии подается на электромагниты. В этом заключается технический результат. 2 с. и 3 з.п. ф-лы, 6 ил.

Изобретение относится к магнитному вращающемуся устройству и, в частности, к магнитному вращающемуся устройству, которое использует многократно пульсирующие силы, возникающие между постоянным магнитом и электромагнитом. В обычных электрических моторах якорь в качестве ротора состоит из витков проволоки, а электрическое поле в качестве статора состоит из постоянного магнита. В таких обычных электромоторах, однако, ток обычно следует подавать к обмотке якоря, который вращается. Когда подают ток, то генерируется тепло, что вызывает тот недостаток, что в действительности получается не так много движущей силы. Это в свою очередь приводит к тому, что нельзя получить достаточно эффективные силы магнитного поля от постоянного магнита. Кроме того, в обычном электродвигателе, поскольку конструкция якоря такова, что он состоит из обмоток, момент инерции не может быть очень высоким, так что достаточный крутящий момент не получается. Для того чтобы преодолеть указанные выше недостатки такого обычного электромотора, было предложено в японской заявке N 61868-1993 (патент-аналог США N 4751486) магнитное вращающее устройство, в котором расположено вдоль двух роторов соответственно несколько постоянных магнитов с заранее заданным углом и в котором электромагнит расположен на одном из роторов. В сконструированном, как правило, обычном электромоторе существует предел, до которого можно повышать эффективность преобразования энергии. В дополнение к этому, нельзя получить достаточно высокий крутящий момент электромотора. По приведенным выше причинам в настоящее время различные усовершенствования были проведены на существующих электромоторах без какого-либо успеха. Сконструированный таким образом электромотор обеспечивает удовлетворительные характеристики. В магнитном вращающемся устройстве, раскрытом в японской заявке N 61868-1993 (патент США N 4751486), вращается пара роторов. Следовательно, необходимо, чтобы каждый из роторов имел высокую точность и в дополнение к этому должны быть выполнены измерения для более легкого управления вращением. Наиболее близким к предложению по технической сущности и максимальному количеству сходных признаков является вращающееся устройство, содержащее вращающийся вал, ротор, который закреплен на вращающемся валу, постоянные магниты, расположенные на роторе, и средства для уравновешивания вращения, которые выполнены из немагнитного материала в виде немагнитного ротора, при этом постоянные магниты выполнены плоскими и расположены таким образом, что несколько магнитных полюсов одного типа полярности расположены по внешней периферийной поверхности в направлении вращения и несколько магнитных полюсов другого типа полярности расположены на внутренней периферийной поверхности, причем каждая пара соответствующих магнитных полюсов одной и другой полярности расположены наклонно по отношению к радиальной линии, электромагнитные средства расположены навстречу ротору для развития магнитного поля, которое обращено к магнитному полю ротора, детекторные средства для определения положения вращающего ротора, чтобы обеспечить возбуждение электромагнитных средств (см. заявку WO 94/01924, H 01 N 11/00, 1994). С точки зрения описанных выше проблем, цель настоящего изобретения состоит в том, чтобы создать магнитное вращающееся устройство, в котором энергию вращения можно эффективно получить от постоянного магнита при минимальном количестве затрат электроэнергии и в котором регулирование вращения можно проводить относительно просто. Согласно одному аспекту изобретения предлагается магнитное вращающееся устройство, содержащее закрепленный на вращающемся валу ротор с расположенными на нем постоянными магнитами, при этом постоянные магниты расположены таким образом, что их магнитные полюса одной полярности расположены вдоль внешней периферийной поверхности в направлении вращения, а их магнитные полюса другой полярности расположены вдоль внутренней периферийной поверхности, причем каждая пара соответствующих магнитных полюсов и другой полярности расположена наклонно по отношению к радиальной линии; детекторные средства для прерывистого возбуждения электромагнитного средства, взаимодействующего с ротором, электромагнитное средство расположено лицевой поверхностью навстречу ротору для возбуждения магнитного поля противоположной его полюсам полярности с того места, где опережающий постоянный магнит по условию вращения ротора проходит лицевую поверхность электромагнитного средства в направлении вращения, а ротор содержит балансиры для уравновешивания его вращения. Постоянные магниты могут быть выполнены в виде плоских магнитов. Балансиры для уравновешивания вращения ротора выполнены из немагнитного материала. Согласно еще одному аспекту настоящего изобретения предлагается магнитное вращающееся устройство, содержащее закрепленный на вращающемся валу первый ротор с расположенными на нем постоянными магнитами, при этом постоянные магниты первого ротора расположены таким образом, что несколько магнитных полюсов одной полярности расположены вдоль его внешней периферийной поверхности в направлении вращения, а несколько магнитных полюсов другой полярности расположены вдоль его внутренней периферийной поверхности, причем каждая пара соответствующих магнитных полюсов одной и другой полярности расположена наклонно по отношению к радиальной линии детекторного средства для возбуждения первого электромагнитного средства, взаимодействующего с ротором, причем второй ротор, который вращается вместе с первым ротором и закреплен на вращающемся валу, имеет несколько расположенных на нем постоянных магнитов, при этом постоянные магниты второго ротора расположены одной магнитной полярностью вдоль внешней периферийной поверхности в направлении вращения, а другой магнитной полярностью вдоль внутренней периферийной поверхности, причем каждая пара соответствующих магнитных полюсов из одной и другой полярности расположена наклонно относительно радиальной линии, второе электромагнитное средство соединено магнитной связью с первым электромагнитным средством так, что при намагничивании стороны, обращенной к роторам, противоположны по полярности друг другу и создают магнитное поле, идентичное по полярности соответствующим постоянным магнитам роторов так, что они отталкиваются друг от друга, причем электромагнитные средства возбуждаются, когда начальная точка, расположенная между опережающим и последующим постоянными магнитами ротора, сравнивается с центральной точкой первого и второго электромагнитного средства, и обесточиваются, когда проходит последний магнит, причем оба ротора имеют несколько балансиров для уравновешивания. Описание чертежей:

Фиг. 1 - пространственный вид, схематически изображающий вращающееся устройство согласно настоящему изобретению;

Фиг. 2 - вид сбоку магнитного вращающегося устройства, изображенного на фиг. 1;

Фиг. 3 - вид в плане на ротор магнитного вращающегося устройства, изображенного на фиг. 1 и 2;

Фиг. 4 - электрическая схема цепи в магнитном вращающемся устройстве, показанном на фиг. 1;

Фиг. 5 - вид сверху, показывающий распределение магнитного поля, образованного между ротором и электромагнитом (электромагнитным средством) в магнитном вращающемся устройстве, представленном на фиг. 1 и 2;

Фиг. 6 - пояснительная схема, изображающая крутящий момент, который вызывает вращение ротора в магнитном вращающемся устройстве по фиг. 1 и 2. Магнитное поле, развиваемое электромагнитными средствами, и магнитное поле от постоянных магнитов взаимно отталкиваются друг от друга. В дополнение к этому магнитное поле от постоянных магнитов сглаживается магнитными полями от других расположенных по соседству постоянных магнитов и электромагнитных средств. Следовательно, между ними создается крутящий момент, достаточный для вращения ротора. Поскольку ротор обладает высокой инерционной силой, когда ротор начинает вращаться, то его скорость растет под действием инерционной силы и поворачивающей силы. Магнитное вращающееся устройство, соотнесенное с одним примером осуществления настоящего изобретения, будет далее описано со ссылками на следующие чертежи. Фиг. 1 и 2 представляют собой схематическое изображение магнитного вращающегося устройства, соотнесенного с одним примером осуществления настоящего изобретения. По всему описанию термин "магнитное вращающееся устройство" включает в себя электрический двигатель, и в соответствии с его основным назначением получения вращающей силы от магнитных сил постоянных магнитов он относится к вращающимся устройствам, использующим силы магнитного поля. Как показано на фиг. 1, в магнитном вращающемся устройстве, относящемся к одному примеру осуществления настоящего изобретения, вращающийся вал 4 закреплен с возможностью вращения на раме 2 с подшипниками 5. На валу 4 закреплены первый магнитный ротор 6 и второй магнитный ротор 8, оба они создают вращающие силы; и вращаемая масса 10, которая имеет несколько смонтированных на ней стержнеобразных магнитов 9 для получения вращающих сил в качестве энергии. Они закреплены таким образом, чтобы иметь возможность вращаться с вращающимся валом 4. У первого и второго магнитных роторов 6 и 8 расположены, как это будет подробно описано ниже со ссылками на фиг. 1 и 2, первый электромагнит 12 и второй электромагнит 14 соответственно, которые возбуждаются одновременно с вращением первого и второго магнитных роторов 6 и 8, оба они обращены друг к другу и каждый расположен с магнитным зазором. Первый и второй электромагниты 12 и 14 смонтированы соответственно на кронштейне 16, они образуют линию магнитной индукции. Как показано на фиг. 3, каждый из первого и второго магнитных роторов 6 и 8 имеет несколько расположенных на их дискообразной поверхности плоских магнитов 22A - 22H для развития магнитного поля и создания вращающих сил и несколько балансиров 20A - 20H, изготовленных из немагнетиков, для уравновешивания магнитных роторов 6 и 8. Согласно примеру осуществления первый и второй магнитные роторы 6 и 8, каждый, имеют расположенные по дискообразной поверхности 24 с равными промежутками восемь плоских магнитов 22A - 22H на половине внешней периферийной поверхности и восемь балансиров 20A - 20H вдоль другой половины внешней периферийной поверхности. Как показано на фиг. 3, каждый из плоских магнитов 22A - 22H расположен таким образом, что продольная ось 1 составляет угол D относительно радиальной осевой линии 11 дискообразной поверхности 24. В этом примере осуществления для угла D установлены углы 30 и 56 o . Подходящий угол, однако, может быть установлен в зависимости от радиуса дискообразной поверхности 24 и количества плоских магнитов 22A - 22H, которое следует расположить на дискообразной поверхности 24. Как изображено на фиг. 2, с точки зрения эффективного использования магнитного поля предпочтительно, чтобы плоские магниты 22A - 22H на первом магнитном роторе 6 располагались таким образом, чтобы их N-полюса выступали наружу, в то время как плоские магниты 22A - 22H на втором магнитном роторе 8 расположены таким образом, что их S-полюса выступают наружу. Снаружи от первого и второго магнитных роторов 6 и 8 расположены первый и второй электромагниты 12 и 14, обращенные навстречу первому и второму роторами 6 и 8 соответственно с магнитным зазором. Когда первый и второй электромагниты 12 и 14 возбуждаются, они создают магнитное поле, идентичное по полярности соответственным им плоским магнитам 22A - 22H, так, что они отталкиваются один от другого. Другими словами, как показано на фиг. 2, поскольку плоские магниты 22A - 22H на первом магнитном роторе 6 имеют свои N-полюса, обращенные наружу, то первый электромагнит 12 возбуждается таким образом, что сторона, обращенная к первому магнитному ротору 6, создает N-полярность. Подобным образом, поскольку плоские магниты 22A - 22H на втором магнитном роторе 8 имеют свои S-полюса, обращенные наружу, то второй электромагнит 14 возбуждается таким образом, что сторона, обращенная к плоским магнитам 22A - 22H, создает S-полярность. Первый и второй электромагниты 12 и 14, которые магнитным образом соединены с помощью кронштейна 16, намагничиваются таким образом, что стороны, обращенные к их соответственным роторам 6 и 8, противоположны по полярности относительно друг друга. Это означает, что магнитные поля электромагнитов 12 и 14 могут быть эффективно использованы. Чувствительный элемент, такой как микровыключатель 30, предусмотрен на одном любом из роторов, первом магнитном роторе 6 или втором магнитном роторе 8, для определения положения вращения магнитных роторов 6 и 8. Это означает, как показано на фиг. 3, что при направлении вращения плоских магнитов 22A - 22H первый и второй магнитные роторы 6 и 8 соответственно возбуждаются, когда проходит опережающий плоский магнит 22A. Другими словами, при направлении 32 вращения электромагнит 12 или 14 возбуждается, когда начальная точка S 0 , расположенная между опережающим плоским магнитом 22A и последующим плоским магнитом 22B, сравняется с центральной точкой R 0 либо электромагнита 12, либо электромагнита 14. В дополнение к этому при направлении 32 вращения плоских магнитов 22A - 22H первый и второй магнитные роторы 6 и 8 обесточиваются, когда проходит последний плоский магнит 22A. В этом примере осуществления конечная точка E 0 установлена симметрично от начальной точки S 0 на вращающейся дискообразной поверхности 24. Когда конечная точка E 0 сравняется с центральной точкой R 0 электромагнита 12 либо электромагнита 14, то электромагнит 12 или 14 соответственно обесточивается. Как будет показано ниже, при центральной точке R 0 электромагнита 12 или 14, установленного произвольно между начальной точкой S 0 и конечной точкой E 0 , магнитные роторы 6 и 8 начинают вращаться, если электромагниты 12 и 14 и их плоские магниты 22A - 22H обращены друг к другу. Когда используется микровыключатель, такой как чувствительный элемент 30, для определения положения вращения, то допускается, чтобы точка контакта микровыключателя проскользила по поверхности вращающейся дискообразной поверхности 24. Предусматривается такой шаг для начальной S 0 и конечной точки E 0 , что контакт микровыключателя замыкается между начальной точкой S 0 и конечной точкой E 0 . Зона вдоль периферии между ними выступает за другие периферийные зоны вращающейся дискообразной поверхности 24. Очевидно, что может быть использован фотодатчик или подобные ему элементы вместо микровыключателя вроде чувствительного элемента 30 для определения положения вращения. Как показано на фиг. 4, обмотки электромагнитов 12 и 14 подсоединены к источнику 42 энергии на прямом токе через подвижный контакт реле 40, который подключен к серии с обмотками. Последовательная цепь, включающая реле 40 (соленоид) и чувствительный элемент 30, или микровыключатель, подключена к источнику 42 энергии на прямом токе. Кроме того, с точки зрения преобразования энергии, к источнику 42 энергии на постоянном токе подключен переключатель 44, такой как солнечный элемент. Предпочтительно, чтобы источник 42 энергии на постоянном токе имел возможность постоянно заряжаться, используя солнечную энергию или тому подобное. В магнитном вращающемся устройстве, показанном на фиг. 1 и 2, распределение магнитного поля, представленное на фиг. 5, образовано между плоскими магнитами 22A - 22H, расположенными на каждом из магнитных роторов 6 и 8, и электромагнитами 12 и 14, которые обращены к ним соответственно. Когда электромагнит 12 или 14 возбуждается, магнитное поле плоского магнита на плоских магнитах 22A - 22H вблизи электромагнита 12 или 14 искажается в продольном направлении в соответствии с направлением вращения. В результате этого между ними возникает пульсирующая сила. Как это очевидно из деформации магнитного силового поля, пульсирующая сила имеет большую составляющую в продольном или перпендикулярном направлении и создает крутящий момент, как показано по стрелке 32. Подобным образом магнитное поле плоского магнита на плоских магнитах 22A - 22H, которые затем входят в магнитное поле электромагнита 12 или 14, деформируется, поскольку оно перемещается к противоположному полюсу предыдущего плоского магнита в плоских магнитах 22A - 22H, то есть магнитное поле искажается в большей степени и благодаря этому сглаживается. Это означает, что пульсирующая сила, возникающая между плоскими магнитами в плоских магнитах 22A - 22H, которые уже вошли в магнитное поле электромагнитов 12 или 14 больше, чем пульсирующая сила, создаваемая между следующими входящими плоскими магнитами в плоских магнитах 22A - 22H и электромагнитами 12 или 14. Соответственно вращающая сила, показанная стрелкой 32, действует на вращающуюся дискообразную поверхность 24. Вращающаяся дискообразная поверхность 24, которой уже была сообщена сила, продолжает вращаться благодаря инерционным силам, даже тогда, когда она уже обесточена после того, как конечная точка E 0 прошла касание с центральной точкой R 0 электромагнита 12 или 14. Чем больше инерционная сила, тем плавнее вращение. На начальном этапе вращения угловой момент, как изображено на фиг. 6, сообщается вращающейся дискообразной поверхности 24. Это значит, что в начале вращения, как показано на фиг. 6, когда полюс М плоского магнита слегка смещен в направлении вращения от полюса M" электромагнита, пульсирующая сила вступает в действие между обоими полюсами M и M" плоского магнита у вращающейся стороны и электромагнитом у неподвижной стороны соответственно. Следовательно, исходя из соотношения, изображенного на фиг. 6, угловой крутящий момент T возникает на основании формулы T = Fa cos(-), где "a" есть величина постоянная. Этот угловой момент запускает вращение вращающейся дискообразной поверхности 24. После того как вращающаяся дискообразная поверхность 24 начала вращениe, скорость ее вращения постепенно растет вследствие инерционного момента, что позволяет создавать большую вращающую и движущую силу. После того как создано устойчивое вращение вращающейся дискообразной поверхности 24, то можно развивать необходимую электродвижущую силу в катушке электромагнита (не показано) путем вынесения ее наружу вблизи вращающейся массы 10, которая предназначена вращаться вместе с вращающейся дискообразной поверхностью 24. Эта электромагнитная энергия может быть использована по другому назначению. Этот принцип вращения основан на принципе вращения магнитного вращающегося устройства, уже раскрытого в японской патентной заявке 61868 (1993) (патент-аналог США N 4751486 H 01 F 7/14) изобретателем. Это значит, что даже если электромагнит, предусмотренный на одном из роторов магнитного вращающегося устройства в такой патентной заявке, закреплен, то он вращается в соответствии с принципом вращения, раскрытым здесь. Количество плоских магнитов 22A - 22H не ограничивается до "8", как показано на фиг. 1 и 3. Может быть использовано любое количество магнитов. В описанном выше примере осуществления, хотя плоские магниты 22A - 22H расположены вдоль одной половины периферийной зоны дискообразной поверхности 24, а балансиры 20A - 20H расположены вдоль другой половины периферийной зоны, плоские магниты также могут быть расположены вдоль других зон дискообразной поверхности 24. Предпочтительно, чтобы балансиры в дополнение к магнитам были предусмотрены вдоль части периферийной зоны дискообразной поверхности. Противовесы, которые не надо собирать в один блок, могут быть выполнены в виде одного листа пластины, которая проходит по внешней периферийной зоне дискообразной поверхности. В дополнение к этому в описанном примере осуществления, в то время как конструкция выполнена такой, что позволяет возбуждать электромагниты в течение заданного промежутка времени за каждый оборот вращающейся дискообразной поверхности, можно сконструировать электрическую цепь таким образом, чтобы при увеличенном числе оборотов разрешить возбуждение электромагнитов за каждый оборот вращающейся дискообразной поверхности, начиная со второго ее оборота вперед. Далее в описанном выше примере осуществления для постоянных магнитов были использованы плоские магниты, но могут быть использованы и другие типы постоянных магнитов. В действительности, любой тип магнита может быть использован в качестве постоянного магнита настолько, насколько можно расположить несколько магнитных полюсов одного типа вдоль внешней поверхности внутренней периферии и несколько магнитных полюсов другого типа расположить вдоль внутренней периферийной поверхности дискообразной поверхности так, чтобы пара соответствующих магнитных полюсов одной и другой полярности была расставлена с наклоном по отношению к радиальной линии II, как показано на фиг. 3. Хотя в приведенном выше примере осуществления плоские магниты 22A - 22H смонтированы на магнитных роторах 6 и 8, они могут быть электромагнитами. В этом случае электромагниты 12 и 14 могут быть альтернативно электромагнитами или постоянными магнитами. Согласно магнитному вращающемуся устройству по настоящему изобретению можно эффективно получить энергию вращения от постоянных магнитов. Это становится возможным благодаря уменьшению, по возможности намного, тока, подаваемого к электромагнитам, настолько, что лишь потребное количество электроэнергии расходуется на электромагниты. Следует иметь в виду, что для специалиста в данной техники становятся очевидными многие изменения и поправки изобретения, и оно предназначено включить такие очевидные модификации и замены в объем формулы изобретения, представленной здесь.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Магнитное вращающееся устройство, содержащее закрепленный на вращающемся валу ротор с размещенными на нем постоянными магнитами, при этом постоянные магниты расположены таким образом, что их магнитные полюса одной полярности расположены вдоль внешней периферийной поверхности в направлении вращения, а их магнитные полюса другой полярности расположены вдоль внутренней периферийной поверхности, причем каждая пара соответствующих магнитных полюсов одной и другой полярности расположена наклонно по отношению к радиальной линии, детекторные средства для прерывистого возбуждения электромагнитного средства, взаимодействующего с ротором, отличающееся тем, что электромагнитное средство расположено с лицевой поверхностью навстречу ротору для возбуждения магнитного поля противоположной его полюсам полярности с того места, где опережающий постоянный магнит по условию вращения ротора проходит лицевую поверхность электромагнитного средства в направлении вращения, а ротор содержит балансиры для уравновешивания его вращения. 2. Устройство по п.1, отличающееся тем, что постоянные магниты выполнены в виде плоских магнитов. 3. Устройство по п.1, отличающееся тем, что балансиры для уравновешивания вращения ротора выполнены из немагнитного материала. 4. Магнитное вращающее устройство, содержащее закрепленный на вращающемся валу первый ротор с расположенными на нем постоянными магнитами, причем постоянные магниты первого ротора расположены таким образом, что несколько магнитных полюсов одной полярности расположены вдоль его внешней периферийной поверхности в направлении вращения, а насколько магнитных полюсов другой полярности расположены вдоль его внутренней периферийной поверхности, причем каждая пара соответствующих магнитных полюсов одной и другой полярности расположена наклонно по отношению к радиальной линии, детекторное средство для возбуждения первого электромагнитного средства, взаимодействующего с ротором, отличающееся тем, что оно снабжено вторым электромагнитным средством и вторым ротором, который вращается вместе с первым ротором, закреплен на вращающемся валу и имеет несколько расположенных на нем постоянных магнитов, при этом постоянные магниты второго ротора расположены одной магнитной полярностью вдоль внешней периферийной поверхности в направлении вращения, а другой магнитной полярностью - вдоль внутренней периферийной поверхности, причем каждая пара соответствующих магнитных полюсов одной и другой полярности расположена наклонно относительно радиальной линии, второе электромагнитное средство соединено магнитной связью с первым электромагнитным средством так, что при намагничивании стороны, обращенные к роторам, противоположны по полярности друг другу и создают магнитное поле, индентичное по полярности соответствующим постоянным магнитам роторов, так, что они отталкиваются друг от друга, причем электромагнитное средство возбуждаются, когда начальная точка, расположенная между опережающим и последующим постоянными магнитами ротора, сравнивается с центральной точкой первого или второго электромагнитного средства, и обесточиваются, когда проходит последний магнит, причем оба ротора имеют несколько балансиров для уравновешивания их вращения. 5. Устройство по п.4, отличающееся тем, что постоянные магниты выполнены в виде плоских магнитов, а средства для уравновешивания ротора выполнены из немагнитного материала.

Как было показано ранее, одним из важнейших преимуществ многофазных систем является получение вращающегося магнитного поля с помощью неподвижных катушек, на чем основана работа двигателей переменного тока. Рассмотрение этого вопроса начнем с анализа магнитного поля катушки с синусоидальным током.

Магнитное поле катушки с синусоидальным током

При пропускании по обмотке катушки синусоидального тока она создает магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Так для случая, показанного на рис. 1, вектор магнитной индукции направлен по оси катушки вверх. Через полпериода, когда при том же модуле ток изменит свой знак на противоположный, вектор магнитной индукции при той же абсолютной величине поменяет свою ориентацию в пространстве на 1800. С учетом вышесказанного магнитное поле катушки с синусоидальным током называютпульсирующим.

Круговое вращающееся магнитное поле двух- и трехфазной обмоток

Круговым вращающимся магнитным полем называется поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается в пространстве с постоянной угловой частотой.

Для создания кругового вращающегося поля необходимо выполнение двух условий:

    Оси катушек должны быть сдвинуты в пространстве друг относительно друга на определенный угол (для двухфазной системы – на 90 0 , для трехфазной – на 120 0).

    Токи, питающие катушки, должны быть сдвинуты по фазе соответственно пространственному смещению катушек.

Рассмотрим получение кругового вращающегося магнитного поля в случае двухфазной системы Тесла (рис. 2,а).

При пропускании через катушки гармонических токов каждая из них в соответствии с вышесказанным будет создавать пульсирующее магнитное поле. Векторы и, характеризующие эти поля, направлены вдоль осей соответствующих катушек, а их амплитуды изменяются также по гармоническому закону. Если ток в катушке В отстает от тока в катушке А на 90 0 (см. рис. 2,б), то .

Найдем проекции результирующего вектора магнитной индукции на оси x и y декартовой системы координат, связанной с осями катушек:

Модуль результирующего вектора магнитной индукции в соответствии с рис. 2,в равен

Полученные соотношения (1) и (2) показывают, что вектор результирующего магнитного поля неизменен по модулю и вращается в пространстве с постоянной угловой частотой , описывая окружность, что соответствует круговому вращающемуся полю.

Покажем, что симметричная трехфазная система катушек (см. рис. 3,а) также позволяет получить круговое вращающееся магнитное поле.

Каждая из катушек А, В и С при пропускании по ним гармонических токов создает пульсирующее магнитное поле. Векторная диаграмма в пространстве для этих полей представлена на рис. 3,б. Для проекций результирующего вектора магнитной индукции на

оси декартовой системы координат, ось y у которой совмещена с магнитной осью фазы А, можно записать

Приведенные соотношения учитывают пространственное расположение катушек, но они также питаются трехфазной системой токов с временным сдвигом по фазе на 1200. Поэтому для мгновенных значений индукций катушек имеют место соотношения

; ;.

Подставив эти выражения в (3) и (4), получим:

В соответствии с (5) и (6) и рис. 2,в для модуля вектора магнитной индукции результирующего поля трех катушек с током можно записать:

,

а сам вектор составляет с осью х угол a, для которого

,

Таким образом, и в данном случае имеет место неизменный по модулю вектор магнитной индукции, вращающийся в пространстве с постоянной угловой частотой , что соответствует круговому полю.

Магнитное поле в электрической машине

С целью усиления и концентрации магнитного поля в электрической машине для него создается магнитная цепь. Электрическая машина состоит из двух основных частей (см. рис. 4): неподвижного статора и вращающегося ротора, выполненных соответственно в виде полого и сплошного цилиндров.

На статоре расположены три одинаковые обмотки, магнитные оси которых сдвинуты по расточке магнитопровода на 2/3 полюсного деления , величина которого определяется выражением

,

где - радиус расточки магнитопровода, а р – число пар полюсов (число эквивалентных вращающихся постоянных магнитов, создающих магнитное поле, - в представленном на рис. 4 случае р=1).

На рис. 4 сплошными линиями (А, В и С) отмечены положительные направления пульсирующих магнитных полей вдоль осей обмоток А, В и С.

Приняв магнитную проницаемость стали бесконечно большой, построим кривую распределения магнитной индукции в воздушном зазоре машины, создаваемой обмоткой фазы А, для некоторого момента времени t (рис. 5). При построении учтем, что кривая изменяется скачком в местах расположения катушечных сторон, а на участках, лишенных тока, имеют место горизонтальные участки.

Заменим данную кривую синусоидой (следует указать, что у реальных машин за счет соответствующего исполнения фазных обмоток для результирующего поля такая замена связана с весьма малыми погрешностями). Приняв амплитуду этой синусоиды для выбранного момента времени t равной ВА, запишем

;

.

Просуммировав соотношения (10)…(12), с учетом того, что сумма последних членов в их правых частях тождественно равна нулю, получим для результирующего поля вдоль воздушного зазора машины выражение

представляющее собой уравнение бегущей волны.

Магнитная индукция постоянна, если. Таким образом, если мысленно выбрать в воздушном зазоре некоторую точку и перемещать ее вдоль расточки магнитопровода со скоростью

,

то магнитная индукция для этой точки будет оставаться неизменной. Это означает, что с течением времени кривая распределения магнитной индукции, не меняя своей формы, перемещается вдоль окружности статора. Следовательно, результирующее магнитное поле вращается с постоянной скоростью. Эту скорость принято определять в оборотах в минуту:

.

Принцип действия асинхронного и синхронного двигателей

Устройство асинхронного двигателя соответствует изображению на рис. 4. Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.

В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью , принципиально меньшей скорости вращения поля 0 . Отсюда название двигателя - асинхронный.

Величина

называется относительным скольжением . Для двигателей нормального исполнения S=0,02…0,07. Неравенство скоростей магнитного поля и ротора становится очевидным, если учесть, что при вращающееся магнитное поле не будет пересекать токопроводящих стержней ротора и, следовательно, в них не будут наводиться токи, участвующие в создании вращающегося момента.

Принципиальное отличие синхронного двигателя от асинхронного заключается в исполнении ротора. Последний у синхронного двигателя представляет собой магнит, выполненный (при относительно небольших мощностях) на базе постоянного магнита или на основе электромагнита. Поскольку разноименные полюсы магнитов притягиваются, то вращающееся магнитное поле статора, которое можно интерпретировать как вращающийся магнит, увлекает за собой магнитный ротор, причем их скорости равны. Это объясняет название двигателя – синхронный.

В заключение отметим, что в отличие от асинхронного двигателя, у которого обычно не превышает 0,8…0,85, у синхронного двигателя можно добиться большего значенияи сделать даже так, что ток будет опережать напряжение по фазе. В этом случае, подобно конденсаторным батареям, синхронная машина используется для повышения коэффициента мощности.

Литература

    Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

    Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

    Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Контрольные вопросы

    Какое поле называется пульсирующим?

    Какое поле называется вращающимся круговым?

    Какие условия необходимы для создания кругового вращающегося магнитного поля?

    Какой принцип действия у асинхронного двигателя с короткозамкнутым ротором?

    Какой принцип действия у синхронного двигателя?

    На какие синхронные скорости выпускаются в нашей стране двигатели переменного тока общепромышленного исполнения?